地球科学进展 ›› 2008, Vol. 23 ›› Issue (11): 1130 -1140. doi: 10.11867/j.issn.1001-8166.2008.11.1130

综述与评述 上一篇    下一篇

碎屑矿物热年代学研究进展
张沛,周祖翼   
  1. 同济大学海洋地质国家重点实验室, 上海 200092
  • 收稿日期:2008-08-26 修回日期:2008-10-21 出版日期:2008-11-10
  • 通讯作者: 张沛 E-mail:zp0313@126.com
  • 基金资助:

    国家自然科学基金项目“合肥盆地中生代地层的碎屑矿物裂变径迹年代学研究”(编号: 40572075);上海市科委学科带头人计划资助项目“西大别造山带俯冲、折返历史重建”(编号: 08XD14042)资助.

Geological Applications of Detrital Thermochronology

Zhang Pei,Zhou Zuyi   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2008-08-26 Revised:2008-10-21 Online:2008-11-10 Published:2008-11-10

碎屑矿物热年代学是以沉积物中未遭受热重置的碎屑矿物颗粒为研究对象,将造山带抬升、剥露和盆地沉积联系起来的年代学方法。在物源分析、源区构造热历史、古地形恢复和约束地层年龄等方面有广泛的应用。在概述其基本原理的基础上,从造山带剥露历史分析、物源分析中多种技术的联合运用和现代汇水区侵蚀速率计算3个方面介绍了这一方法近年来的研究进展。

Single-grain age dating of detrital sediments can provide imprortant record on provenance and thermal/tectonic history of the source area. A popular approach to extracting such information is the U/Pb dating of detrital zircon. However, the refractory nature of U/Pb zircon system means that it is less useful for understanding the thermal and exhumation history of the hinterland than other systems. Low temperature thermochronometers(40Ar/39Ar,fission track, and (U-Th)/He) are particularly sensitive to the movement of rocks through the upper crust due to their relative low effective closure temperatures. In recent years, detrital thermochronology has been extensively used to identify the provenance of sediments from source regions with distinct thermal history, to determine the history and rate of exhumation of the source region, to reconstruct the palaeorelief, and to provide an upper limit of the sediment age. Here we review the principles of detrital thermochronology and illustrate the recent advances of this method in the following fields: a) using synorogenic sediments to constraint the exhumation history of orogen, b) A combination of low temperature thermochronometers with U/Pb system and other provenance analysis techniques, c) estimating the long-term averaged erosion rate of modern catchment.

中图分类号: 

[1] Bernet M,Spiegel C. Introduction:Detrital thermochronology[C]Bernet M,Spiegel C,eds. Detrital ThermochronologyProvenance Analysis,Exhumation and Landscape Evolution of Mountain belts. Boulder:Geological Society of America Special Paper,2004,378:1-6.

[2] Bernet M,Garver J I. Fission-track analysis of detrital zircon[J]. Reviews in Mineralogy and Geochemistry,2005,58:205-238.

[3] Hodges K V,Ruhl K W,Wobus C W,et al. 40Ar/39Ar thermochronology of detrital minerals[J]. Reviews in Mineralogy and Geochemistry,2005,58:239-257.

[4] Reiners P W,Brandon M T. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences,2006,34:419-466.

[5] Bishop P. Long-term landscape evolution:Linking tectonics and surface processes[J].Earth Surface Processes and Landforms,2007,32:329-365.

[6] Hurford A J,Carter A. The role of fission track dating in discrimination of provenance[C]Morton A C,Todd S P,Haughton P D,eds. Developments in Sedimentary Provenance Studies. London:Geological Society of London Special Publication,1991,57:67-78.

[7] Carter A. Present status and future avenues of source region discrimination and characterization using fission track analysis[J]. Sedimentary Geology,1999,124:31-45.

[8] Bernet M,Brandon M T,Garver J I,et al. Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps[C]Bernet M,Spiegel C,eds. Detrital Thermochronology-Provenance Analysis,Exhumation and Landscape Evolution of Mountain Belts. Boulder:Geological Society of America Special Paper,2004,378:25-36.

[9] Brandon M T,Vance J A. New statistical methods for analysis of fission track grain-age distributions with applications to detrital zircon ages from the Olympic subduction complex,western Washington State[J]. American Journal of Science,1992,292:565-636.

[10] Clift P D,Carter A,Hurford A J. Constraints on the evolution of the East Greenland Margin: Evidence from detrital apatite in offshore sediments[J]. Geology,1996,2411:1 013-1 016.

[11] Ruiz G M H,Seward D,Winkler W. Detrital thermochronology-a new perspective on hinterland tectonics,an example from the Andean Amazon Basin,Ecuador[J]. Basin Research,2004,16:413-430.

[12] Stock J D,Montgomery D R. Estimating palaeorelief from detrital mineral age ranges[J]. Basin Research,1996,8:317-327.

[13] Reiners P W. Thermochronologic approaches to paleotopography[J]. Reviews in Mineralogy and Geochemistry,2007,66:243-267.

[14] Vermeesch P. Quantitative geomorphology of the White mountainsCalifornia,using detrital apatite fission track thermochronology[J]. Journal of Geophysical Research,2007,112,F03004,doi:10.1029/2006JF000671.

[15] Najman Y,Pringle M,Godin L,et al. Dating of the oldest continental sediments from the Himalayan foreland basin[J]. Nature,2001,410:194-197.

[16] Stewart R J,Brandon M T. Detrital-zircon fission-track ages for the "Hoh Formation":Implications for late Cenozoic evolution of the Cascadia subduction wedge[J]. GAS Bulletin,2004,116:60-75.

[17] Carter A,Moss S J. Combined detrital-zircon fission-track and U-Pb dating:A new approach to understanding hinterland evolution[J]. Geology,1999,273:235-238.

[18] Carter A,Bristow C S. Detrital zircon geochronology:Enhancing the quality of sedimentary source information through improved methodology and combined U-Pb and fission-track techniques[J]. Basin Research,2000,12:47-57.

[19] Carter A,Bristow C S. Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology:A study of the Khorat plateau basin,eastern Thailand[J]. Basin Research,2003,15:271-285.

[20] Rahl J M,Reiners P W,Campbell I H,et al. Combined single-grainU-Th/He and U/Pb dating of detrital zircons from the Navajo Sandstone,Utah[J]. Geology,2003,319:761-764.

[21] Campbell I H,Reiners P W,Allen C M,et al. He-Pb double dating of detrital zircons from the Ganges and Indus rivers: Implication for quantifying sediment recycling and provenance studies[J]. Earth and Planetary Scicence Letters,2005,237:402-432.

[22] Reiners P W,Campbell I S,Nicolescu S,et al. U-Th/He-Pb double-dating of detrital zircons[J]. American Journal of Science,2005,305:259-311.

[23] Bernet M,van der Beek P A,Pik R,et al. Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, western Nepal[J]. Basin Research,2006,18:393-412.

[24] Brewer I D,Burbank D W,Hodges K V. Modelling detrital cooling-age populations:Insights from two Himalayan catchments[J]. Basin Research,2003,15:305-320.

[25] Ruhl K W,Hodges K V. The use of detrital mineral cooling ages to evaluate steady state assumptions in active orogens:An example from the central Nepalese Himalaya[J]. Tectonics,2005,24:TC4015, doi:10.1029/2004TC001712.

[26] Brewer I D,Burbank D W,Hodges K V. Downstream development of a detrital cooling-age signal:Insights from 40Ar/39Ar muscovite thermochronology in the Nepalese Himalaya[C]Willett S D,Hovius N,Brandon M T,et al,eds. Tectonics,Climate,and Landscape Evolution. Boulder:Geological Society of America Special Paper,2006,398:321-338.

[27] Huntington K W,Hodges K V. A comparative study of detrital mineral and bedrock age-elevation methods for estimating erosion rates[J]. Journal of Geophysical Research,2006,111,F03011,doi:10.1029/2005JF000454.

[28] Zheng Dewen,Zhang Peizhen,Wan Jinglin,et al. Detrital grain thermochronology—A potential method for research on coupling process between basin and mountain[J]. Seismology and Geology,2000,22suppl.:25-36.[郑德文,张培震,万景林,. 碎屑颗粒热年代学——一种揭示盆山耦合过程的年代学方法[J]. 地震地质,2000, 22(增刊):25-36.]

[29] Wang Guocan. A new approach to determine the exhumation history of the sedment provenance: Detrital zircon and apatite fission-track thermochronology[J]. Geological Science and Technology Information,2002,214:35-40. [王国灿. 沉积物源区剥露历史分析的一种新途径——碎屑锆石和磷灰石裂变径迹热年代学[J]. 地质科技情报,2002,214:35-40.]

[30] Zheng Dewen,Zhang Peizhen,Wan Jinglin,et al. Late Cenozoic deformation subsequence in northeastern margin of Tibet—Detrital AFT records from Linxia Basin[J]. Science in ChinaSeries D,2003,46suppl.:266-275. [郑德文,张培震,万景林,. 青藏高原东北边缘晚新生代构造变形的时序——临夏盆地碎屑颗粒磷灰石裂变径迹记录[J]. 中国科学:D,2003,33(增刊):190-198.]

[31] Wang Xiuxi,Li Jijun,Song Chunhui,et al. Cenozoic uplift of west Qinling, northeast margin of Tibetan Plateau:The record of detrital apatite fission track data in Tianshui basin[J]. Acta Sedimentologica Sinica,2006,246:783-789. [王修喜,李吉均,宋春晖,. 青藏高原东北缘西秦岭新生代抬升天水盆地碎屑颗粒磷灰石裂变径迹记录[J]. 沉积学报,2006,246:783-789.]

[32] Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology,1973,40:259-274.

[33] Dodson M H. Theory of cooling ages[C]Jaeger E,Hunziker J C,eds. Lectures in Isotope Geology. Berlin:Springer-Verlag,1979:207-214.

[34] Garver J I,Brandon M T,Roden-Tice M,et al. Exhumation history of orogenic highlands determined by detrital fission track thermochronology[C]Ring U,Brandon M T,Lister G S,et al,eds. Exhumation Processes:Normal Faulting,Ductile Flow,and Erosion. London:Geological Society of London Special Publication,1999,154:283-304.

[35] Reiners P W,Ehlers T A,Zeitler P K. Past,Present,and Future of Thermochronology[J]. Reviews in Mineralogy and Geochemistry,2005,58:1-18.

[36] Bernet M,Zattin M,Garver J I,et al. Steady-state exhumation of the European Alps[J]. Geology,2001,291:35-38.

[37] Carrapa B,Wijbrans J,Bertotti G. Episodic exhumation in the Western Alps[J]. Geology,2003,317:601-604.

[38] Von Eynatten H,Wijbrans J. Precise tracing of exhumation and provenance using 40Ar/39Ar geochronology of detrital white mica: The example of the central Alps[C]Mccann T,Saintot A,eds. Tracing Tectonic Deformation Using the Sedimentary Record. London:Geological Society of London Special Publication,2003,208:289-305.

[39] Cederbom C E,Sinclair H,Schlunegger F,et al. Climate-induced rebound and exhumation of the European Alps[J]. Geology,2004,328:709-712.

[40] Spiegel C,Siebel W,Kuhlemann J,et al. Toward a comprehensive provenance analysis:A multi-method approach and its implications for the evolution of the central Alps[C]Bernet M,Spiegel C,eds. Detrital Thermochronology-Provenance Analysis,exhumation,and Landscape Evolution of Mountain Belts. Boulder:Geological Society of America Special Paper,2004,378:37-50.

[41] Kuhlemann J,Dunkl I,Brügel A,et al. From source terrains of the eastern Alps to the Molasse basin:Detrital record of non-steady-state exhumation[J]. Tectonophysics,2006,413:301-316.

[42] Kuhlemann J,Frisch W,Dunkl I,et al. Quantifying tectonic versus erosive denudation by the sediment budget:The Miocene core complexes of the Alps[J]. Tectonophysics,2001,330:1-23.

[43] Clift P D,Campbell I H,Pringle M S,et al. Thermochronolgy of the modern Indus river bedload:New insight into the controls on the marine stratigraphic record[J]. Tectonics,2004,23,TC5013,doi:10.1029/2003TC001559.

[44] Clift P D,Carter A,Campbell I H,et al. Thermochronology of mineral grains in the Red and Mekong rivers,Vietnam:Provenance and exhumation implications for southeast Asia[J]. Geochemistry,Geophysics,Geosystems,2006,710:Q10005,doi:10.1029/2006GC001336.

[45] Foster G L,Carter A. Insights into the patterns and locations of erosion in the Himalaya-A combined fission-track and in situ Sm-Nd isotopic study of detrital apatite[J]. Earth and Planetary Science Letters, 2007,257:407-418.

[46] Zattin M,Stefani C,Martin S. Detrital fission-track analysis and sedimentary petrofacies as keys of Alpine exhumation:The example of the Venetian ForelandEuropean Southern Alps,Italy[J]. Journal of Sedimentary Research,2003,736:1 051-1 061.

[47] Coutand I,Carrapa B,Deeken A,et al. Propagation of orographic barriers along an active range front:Insights from sandstone petrography and detrital apatite fission-track thermochronology in the intramontane Angastaco basin,NW Argentina[J]. Basin Research,2006,18:1-26.

[48] Dunkl I,Di Giulio A,Kuhlemann J. Combination of singlegrain fission-track chronology and morphological analysis of detrital zircon crystals in provenance studies-sources of the Macigno formationApennines, Italy[J]. Journal of Sedimentary Geology,2001,714:516-525.

[49] Wagner G A,Reimer G M. Fission track tectonics:The tectonic interpretation of fission track apatite ages[J]. Earth and Planetary Science Letters,1972,14:263-268.

[50] Brandon M T,Roden-Tice M K,Garver J I. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State[J]. GSA Bulletin,1998,1108:985-1 009.

[51] Reiners P W,Ehlers T A,Garver J I,et al. Late Miocene exhumation and uplift of the Washington cascade range[J]. Geology,2002,309:767-770.

[52] Reiners P W,Zhou Z Y,Ehlers T A,et al. Post-orogenic evolution of the Dabie Shan,eastern China,from U-Th/He and fission-track thermochronology[J]. American Journal of Science,2003,303:489-518.

[53] Zhou Zuyi,Xu Changhai,Reiners P W,et al. Late Cretaceous-Cenozoic exhumation history of Tiantangzhai region of Dabieshan Orogen:Constraints fromU-Th/He and fission track analysis[J]. Chinese Science Bulletin,2003,4811:1 151-1 156.[周祖翼,许长海,Reiners P W,et al. 大别山天堂寨地区晚白垩世以来剥露历史的(U-Th/He和裂变径迹分析证据[J]. 科学通报,2003,486:598-602.]

[54] Willett S D,Brandon M T. On steady states in mountain belts[J]. Geology,2002,302:175-178.

[55] Sircombe K N. AGEDISPLAY:An EXCELworkbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions[J]. Computers and Geosciences,2004,301:21-31.

[56] Stock G M,Ehlers T A,Farley K A. Where does sediment come from Quantifying catchment erosion with detrital apatiteU-Th/He thermochronometry[J]. Geology,2006,349:725-728.

[57] Bierman P B. Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: A review from the geomorphic perspective[J]. Journal of Geophysical Research,1994,99:13 885-13 896.

[58] Tomkins K M,Humphreys G S,Wilkinson M T,et al. Contemporary versus long-term denudation along a passive plate margin: The role of extreme events[J]. Earth Surface Processes and Landforms,2007,32:1 013-1 031.

[59] Schaller M,von Blanckenburg F,Veldkamp A,et al. A 30000 yr record of erosion rates from cosmogenic 10Be in Middle European river terraces[J]. Earth and Planetary Science Letters,2002,204:307-320.

[60] Matmon A,Bierman P R,Larsen J,et al. Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky mountains[J]. Geology,2003,312:155-158.

[61] Wittmann H,von Blanckenburg F,Kruesmann T,et al. Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the central Alps of Switzerland[J]. Journal of Geophysical Research,2007,112,F04010,doi:10.1029/2006JF000729.

[1] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[2] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[3] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[4] 董治宝, 李超, 吕萍, 胡光印. 侵蚀型沙丘:来自火星的启示[J]. 地球科学进展, 2021, 36(2): 125-138.
[5] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[6] 许海超,张建辉,戴佳栋,王勇. 耕作侵蚀研究回顾和展望[J]. 地球科学进展, 2019, 34(12): 1288-1300.
[7] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[8] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[9] 唐志敏, 侯青叶, 游远航, 杨忠芳, 李括. 珠三角平原区第四系剖面重金属分布特征及其影响因素[J]. 地球科学进展, 2017, 32(8): 885-898.
[10] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[11] 徐永福. 高放废物地质处置库中膨润土的侵蚀机理和模型研究综述[J]. 地球科学进展, 2017, 32(10): 1050-1061.
[12] 魏传义, 刘春茹, 李长安, 尹功明, 李文朋, 赵举兴, 张增杰, 张岱, 孙习林, 李亚伟. 石英ESR法物源示踪:认识与进展[J]. 地球科学进展, 2017, 32(10): 1062-1071.
[13] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[14] 史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.
[15] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
阅读次数
全文


摘要