地球科学进展 ›› 2005, Vol. 20 ›› Issue (6): 607 -617. doi: 10.11867/j.issn.1001-8166.2005.06.0607

研究论文 上一篇    下一篇

利用回归模型模拟卫星跟踪海洋漂流浮标轨迹
苏京志, 王东晓, 陈举, 杜岩, 谢强   
  1. 中国科学院南海海洋研究所热带海洋环境动力学重点实验室,广东 广州 510301
  • 收稿日期:2003-11-10 修回日期:2004-10-12 出版日期:2005-06-25
  • 通讯作者: 王东晓(1969-),男,浙江浦江人,研究员,主要从事物理海洋研究. E-mail:dxwang@scsio.ac.cn
  • 基金资助:

    国家自然科学基金项目“南海中尺度过程时空变异特征的遥感研究”(编号:40376004)和“南海夏季越南沿岸上升流及其在区域气候变化中的地位”(编号:40476013);国家863计划项目“面向全球海洋同化计划的南海区域系统”(编号:2002AA639250)资助.

MODELING THE TRAJECTORIES OF SATELLITE-TRACKED-DRIFTERS WITH REGRESSION MODELS

SU Jingzhi; WANG Dongxiao; CHEN Ju; DU Yan; XIE Qiang    

  1. LED, South China Sea Institute of Oceanonolgy, Chinese Academy of Sciences, Guangzhou 510301, China
  • Received:2003-11-10 Revised:2004-10-12 Online:2005-06-25 Published:2005-06-25

分析浮标漂流速度和表层地转流、风海流结果表明:浮标漂流速度和表层地转流具有良好相关性。针对卫星跟踪漂流浮标运动的准地转性,建立了以海表地转流为主要回归自变量的几种回归模型,用以模拟浮标漂流轨迹,以期对浮标运动特性有进一步的认识。对南海中伴随涡旋运动的2个浮标模拟试验显示,诸多模型中以海表地转流、风海流及背景流为自变量的回归模型模拟浮标漂流轨迹效果较好。利用该回归模型,模拟出南海2个漂流浮标轨迹和真实轨迹距离偏差较小且二者运动趋势基本一致。通过分析回归模拟所得风海流、海表地转流及背景流发现:涡旋中心附近浮标漂移主要受地转流的控制,而涡旋边缘处风海流起到关键性作用,正是这部分贡献使得浮标能够进入(脱离)涡旋。背景流的空间分布决定着浮标漂移的最终去向,特别是背景流方向改变的区域,背景流的存在使得模拟浮标轨迹能够像真实轨迹一样运移。

A dataset of two drifters in South China Sea was analyzed, together with the MSLA, Ekman drift, and mean sea surface height. It was shown that the velocity of the drifters is consistent with the geostrophic current derived from MSLA. Several regression models, with an independent variable of sea surface geostrophic current, were set up to simulate the real trajectories of drifters. Experiments on the two drifters showed that the model, with independent variables of sea surface geostrophic current, Ekman drift, and mean circulation, has the best efficiency of simulating real trajectories. The simulated trajectories match the real trajectories perfectly. By analyzing the simulated velocities, it was shown that:①In the middle of eddies, the drifter was controlled mainly by the sea surface geostrophic current;②In the edge of eddies, the Ekman drift played an important role in driving the drifter into (out of) eddies;③The mean circulation made the drifters flow correctly in some regions.

中图分类号: 

[1] Thomson R E, LeBlond P H, Rabinovich A B. Oceanic odyssey of a satellite-tracked drifter: North Pacific variability delineated by a single drifter trajectory [J]. Journal of Oceanography, 1997, 53:81-87.
[2] Patterson S L. Surface circulation and kinetic energy distributions in the southern hemisphere oceans from FGGE drifting bouys [J]. Journal of Physical Oceanography, 1985, 15:865-883.
[3] Ishikawa Y, Awaji T, Akitomo K. Global surface circulation and its kinetic energy distribution derived from drifting buoys [J]. Journal of Oceanography, 1997, 53:489-516.
[4] Kamachi M, O'Brien J J. Continuous data assimilation of drifting buoy trajectory into an equatorial Pacific ocean model. [J]. Journal of Marine Systems, 1995, 6:159-178.
[5] Stutzer S,Krauss W. Mean circulation and transports in the South Atlantic Ocean: Combining model and drifter data [J]. Journal of Geophysical Research, 1998, 103(C13): 30 985-31 002.
[6] Mariano A J, Griffa A, Özgökmen T M, et al.  Lagrangian Analysis and Predictability of Coastal and Ocean Dynamics 2000 [J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(7):1 114-1 126.
[7] Mead J L, Bennett A F. Towards regional assimilation of Lagrangian data: The Lagrangian form of the shallow water model and its inverse [J]. Journal of Marine Systems, 2001, 29: 365-384.
[8] Hansen D V, Poulain P M. Quality control and interpolation of WOCE-TOGA drifter data [J]. Journal of Atmospheric and Oceanic Technology,1996, 13:900-906.
[9] Stewart R. Introduction to Physical Oceanography[EB/OL]. http://www.ocean.uni-bremen. de/EInfo/materialien/IntroPhysOc/IntroPhOcindex.html,2002.[10] Fang Guohong, Wei Zexun, Fang Yue, et al. Sea surface height and transport stream function of the China Seas from a variable-grid global ocean circulation model [J]. Science in China(D), 2002, 32(12):969-977. [方国洪,魏泽勋,方越,等.中国近海域际水、热、盐输运:全球变网格模式结果 [J]. 中国科学D辑,2002,32(12):969-977.]
[11] Soong Y S,Hu J H,  Ho C R, et al. Cold-core eddy detected in South China Sea [J]. EOS Transactions AGU,1995,76:345-347.
[12] Su Jingzhi, Lu Yun, Hou Yiyun, et al.Analysis of Satellite tracked drifting buoys in the South China Sea [J]. Oceanologia et Limnologia Sinica,2002,33(2):121-127. [苏京志,卢筠,侯一筠,等.南海表层流场的卫星跟踪浮标观测结果分析 [J].海洋与湖沼,2002,33(2): 121-127.]

[1] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[2] 王鹏,邓红卫. 基于 GISLogistic回归模型的洪涝灾害区划研究[J]. 地球科学进展, 2020, 35(10): 1064-1072.
[3] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[4] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[5] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[6] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[7] 张江勇, 王志敏, 廖志良, 王金莲, 李小穗. 南海深海平原柱状样QD189磁化率、非磁滞剩磁、粒度、碎屑矿物丰度之间的主要关系[J]. 地球科学进展, 2015, 30(9): 1050-1062.
[8] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[9] 蔡树群, 刘统亚, 何映晖, 吕海滨, 陈植武, 刘军亮, 谢皆烁, 许洁馨. 南海东北部剪切流场对内波影响的研究进展[J]. 地球科学进展, 2015, 30(4): 416-424.
[10] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[11] 孙枢. 10年来中国IODP专家委员会工作简要回顾[J]. 地球科学进展, 2014, 29(3): 317-321.
[12] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[13] 贺子丁,刘志飞,李建如,谢昕. 南海西部54万年以来元素地球化学记录及其反映的古环境演变[J]. 地球科学进展, 2012, 27(3): 327-336.
[14] 汪鹏,钟广法. 南海ODP1144站深海沉积牵引体的岩石物理模型研究[J]. 地球科学进展, 2012, 27(3): 359-366.
[15] 李琪,李前裕,王汝建. 20万年来南海古海洋研究的主要进展[J]. 地球科学进展, 2012, 27(2): 224-239.
阅读次数
全文


摘要