地球科学进展 ›› 2003, Vol. 18 ›› Issue (6): 921 -927. doi: 10.11867/j.issn.1001-8166.2003.06.0921

研究论文 上一篇    下一篇

个旧锡矿高松矿田综合信息矿产预测
刘春学 1,秦德先 2,党玉涛 3,谈树成 2,4   
  1. 1.云南财贸学院统计与信息学院,云南 昆明 650221;2.昆明理工大学国土资源工程学院,云南 昆明 650093;3.云南锡业公司,云南 个旧 661400;4.云南大学资源环境与地球科学学院,云南    昆明    650091
  • 收稿日期:2002-12-24 修回日期:2003-06-16 出版日期:2003-12-20
  • 通讯作者: 刘春学 E-mail:liuchunxue7503@sohu.com
  • 基金资助:

    云南省省院省校科技合作项目“个旧锡矿深部及外围成矿预测与矿山增储研究”(编号:2000YK—05)资助.

SYNTHESIS INFORMATION BASED MINERAL RESOURCE PREDICTION OF GAOSONG FIELD IN GEJIU TIN DEPOSIT

Liu Chunxue 1, Qin Dexian 2, Dang Yutao 3, Tan Shucheng 2,4   

  1. 1. The Faculty of Information and Statistics, Yunnan Institute of Finance and Trade, Kunming 650221, China;2. Earth Department, Kunming University of Science and Technology, Kunming 650093, China;3. Yunnan Tin Corporation, Gejiu 661400, China;4.School of Resource, Environment and Earth Science, Yunnan University, Kunming 650091,China
  • Received:2002-12-24 Revised:2003-06-16 Online:2003-12-20 Published:2003-12-01

个旧超大型锡铜多金属矿床是我国和世界上重要的锡产地,近年来面临严重的资源危机。通过分析个旧锡矿高松矿田的地质、地球化学、地球物理等信息特征,用统计排序法和地质统计学方法解决了断裂、褶皱、地层、花岗岩等定性信息的量化、分级,用分维确定了考虑线性和面状因素的最佳信息单元大小,利用以Shannon信息论基本原理为基础的分层次自相似信息量加和法在信息类型内部和类型之间进行了信息的有机综合,得到了三级18个预测区,经云南锡业公司工程和已知矿区验证,取得了很好的效果。

Gejiu superlarge Sn-poly metal deposit is the important tin producing area in our country and world. But it has been faced with severe resource crisis in these years. A lot of data of geology, geochemistry and geophysics has been obtained through plenty of work.  If these data can be used sufficiently, much of exploration fare could be saved. In the Gaosong Field, exploration work is not so sufficient as others while a lot of data, from geology, geochemistry, geophysics, etc, has been obtained. The synthesis information analysis and prediction method to predict mineral resource with the example of Gaosong field are used. In this method, quantified analysis is based on qualitative analysis. The two analysis methods can be combined .Once the qualitative laws are determined, the quantified analysis will be automatic and impersonal. First, information (such as geology, geochemistry, geophysics, etc) characters are gathered in the forms of quality from observation and research. Second, qualitative information (such as faults, folds, sedimentary, granite, and so on) is quantified and graded with the methods of statistics and geostatistics according to the qualitative characters. Third, the optimal unit is found with the method of fractal dimension method on the consideration of linear and facial factors. At last, information in the same type is synthesized with the grade self-similar adding information method based on Shannon information theory. Information in different types is also synthesized with the same grade self-similar adding information method.Some 18 prediction areas classified in 3 grades are found. These prediction areas sufficiently reflect the comprehensive metallogenetic laws of geology, geochemistry and geophysics. With the validation in the projects and known mines by Yunnan Tin Corporation, the effects are creditable.

中图分类号: 

[1] Zhuang Yongqiu, Wang Renzhong, Zheng Shupei, et al. GeJiu Tin-Copper Ploymetallic Deposit[M]. Beijing: China Earthquake Press, 1996. [庄永秋,王任重,郑树培,.云南个旧锡铜多金属矿床[M].北京:地震出版社,1996.]

[2] Sun Shaoyou. The metallogenetic geology condition, laws and prediction of Gaosong field, GeJiu deposit[J]. Gejiu Geology,1989,(2): 11-14. [孙绍有.个旧矿区高松矿田成矿地质条件、成矿规律及预测[J].个旧地质,1989,2:11-14.]

[3] Tan Yunqian. Spatial metallogenetic characters of oxide deposit in GeJiu[J]. Gejiu Geology,1993,(1): 9-21. [谭允谦.个旧层间氧化矿成矿空间特征[J].个旧地质,1993,1:9-21.]

[4] Mandelbrot B B. The Fractal Geometry of Nature [M]. San Francisco: Freemann, 1982.

[5] Zhao Pengda, Meng Xianguo. Geology abnormity and mineral resource prediction[J]. Earth Science—Journal of China University of Geosciences,1993, 18(1): 39-47. [赵鹏大,孟宪国.地质异常与矿产预测[J].地球科学——中国地质大学学报,1993,181:39-47.]

[6] Zhu Yusheng. Introduction to Mineral Resource Evaluation Methods[M]. Beijing: Geology Press, 1984. [朱裕生.矿产资源评价方法导论[M].北京:地质出版社,1984.]

[7] Hou Jingru, Wang Zhiming, Pan HanJun, et al. Multi information Geostatistics in time and space field[J]. Journal of Beijing University of Science and Technology,1995,(2): 101-106. [侯景儒,王志民,潘汉军,.时间空间域中多元信息的地质统计学[J].北京科技大学学报,1995,2:101-106.]

[8] Li Chaoling, Zhang Kexin, Qiang Fangzhu, et al. Research on digital regional geologic survey system techniques[J]. Advances in Earth Sciences,2002,17(2):763-768.[李超岭,张克信,墙芳躅,.数字区域地质调查系统技术研究[J].地球科学进展,2002,17(2):763-768.]

[1] 摆玉龙, 路亚妮, 刘名得. 基于变分模态分解的机器学习模型择优风速预测系统[J]. 地球科学进展, 2021, 36(9): 937-949.
[2] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[3] 汪芋君, 任宏利, 王琳. 第三极地区气温和积雪的季节—年际气候预测研究[J]. 地球科学进展, 2021, 36(2): 198-210.
[4] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[5] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[6] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56.
[7] 毛经伦, 祝意青. 地面重力观测数据在地震预测中的应用研究与进展[J]. 地球科学进展, 2018, 33(3): 236-247.
[8] 丛富云, 徐尚. 陆架边缘迁移轨迹研究现状及应用前景[J]. 地球科学进展, 2017, 32(9): 937-948.
[9] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[10] 满文敏, 周天军. IAP年代际预测试验中火山活动对太平洋海温预测技巧的影响[J]. 地球科学进展, 2017, 32(4): 353-361.
[11] 容新尧, 刘征宇, 段晚锁. 耦合模式中北太平洋和北大西洋海表面温度年代际可预报性和预报技巧的季节依赖性[J]. 地球科学进展, 2017, 32(4): 382-395.
[12] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[13] 张丽霞, 张文霞, 周天军, 吴波. ENSEMBLES耦合模式对全球陆地季风区夏季降水的年代际预测能力评估[J]. 地球科学进展, 2017, 32(4): 409-419.
[14] 孙倩, 吴波, 周天军. 基于可预测模态分析技术的亚澳夏季风统计—动力季节预测模型及其回报技巧评估[J]. 地球科学进展, 2017, 32(4): 420-434.
[15] 向杰, 陈建平, 胡彬, 胡桥, 杨伟. 基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例[J]. 地球科学进展, 2016, 31(6): 603-614.
阅读次数
全文


摘要