地球科学进展 ›› 2022, Vol. 37 ›› Issue (3): 221 -252. doi: 10.11867/j.issn.1001-8166.2022.023

“东南亚构造、沉积与资源环境效应”专辑    下一篇

东南亚构造分区
栾锡武( )   
  1. 山东科技大学 地球科学与工程学院,山东 青岛 266590
  • 收稿日期:2021-08-30 修回日期:2021-12-05 出版日期:2022-03-10
  • 基金资助:
    中国—东盟海上合作基金项目“中国—东盟海洋地震数据平台与研究中心建设”(12120100500017001);国家自然科学基金项目“孟加拉湾东北部沉积过程与特提斯东段构造变形耦合关系”(92055211)

Tectonic Divisions of Southeast Asia

Xiwu LUAN( )   

  1. College of Earth Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China
  • Received:2021-08-30 Revised:2021-12-05 Online:2022-03-10 Published:2022-04-14
  • About author:LUAN Xiwu (1966-), male, Qingdao City, Shandong Province, Professor. Research areas include marine geology and geophysics. E-mail: xluan@sdust.edu.cn
  • Supported by:
    the China-ASEAN Maritime Cooperation Fund Project "China-ASEAN Marine seismic data center"(12120100500017001);The National Natural Science Foundation of China "Coupling relationship between sedimentary process and tectonic deformation of northeastern Bay of Bengal, an Eastern Tethys section"(92055211)

东南亚位于多板块碰撞交汇区,形成过程极其复杂。由于地理和历史的原因,东南亚地区整体研究程度较低,目前仍存在一些尚未解决的科学问题。其中厘清东南亚块体的组成,块体的边界、属性与来源是开展东南亚地学研究的关键。考虑到成因上的密切联系,中国华南、华北、青藏高原以及澳大利亚和印度洋板块向北的俯冲带都可以纳入到东南亚构造区域中,形成一个广义的东南亚构造区;根据地层对比、缝合带追踪、年龄分布和地震特征等,将东南亚划分为东南亚特提斯构造域、东南亚山弧构造域、东南亚挤出逃逸构造域、东南亚巽他古陆构造域、东南亚东部边缘海构造域和东南亚菲律宾弧构造域。其中特提斯块体从冈瓦纳大陆的裂离及拼贴方式、古南海的存在与消亡、新南海的成因机制、菲律宾岛弧活动带和新几内亚岛弧带的属性以及与古南海的关系是今后东南亚地球科学研究中值得关注的科学问题。

Considering the close genetic connection between South and North China, the Tibetan Plateau and the northward subduction zones of the Australian and Indian Ocean plates, all are included in the Southeast Asian tectonic region. The larger Southeast Asian tectonic domain is divided into the Tethys, mountain and arc, extrusion escape, Sundaland, eastern marginal sea, and the Philippine Arc tectonic domains. Overall, research in Southeast Asia is insufficient due to geographical and historical issues, and there are still many unsolved geoscience-related issues. Among them, the splitting and collage of the Tethys block from Gondwanaland, the existence and extinction of the proto-South China Sea, the formation mechanism of the present South China Sea, the attributes of the Philippine Arc active zone and the New Guinea Arc, and the relationship with the proto-South China Sea, are scientific issues worthy of attention in future geoscience research in Southeast Asia.

中图分类号: 

图1 东南亚地理位置
Fig. 1 Location of Southeast Asia
图2 1915年的Yenangyaung油田全景照片(Burmah石油公司提供)
Fig. 2 Panoramic photo of Yenangyaung oilfield in 1915provided by Burmah Oil Company
图3 缅甸近海主要油气发现区域
Fig. 3 Main oil and gas discovery areas in Myanmar offshore
图4 印尼油气勘探现状
Fig. 4 Current situation of oil and gas exploration in Indonesia
图5 全球油气新发现储量主要来自海域(数据来源:伍德麦肯兹、国际能源署)
Fig. 5 The newly discovered oil and gas reserves in the world mainly come from sea areasdata derived from Wood Mackenzie and International Energy Agency
图6 东南亚特提斯构造体系域
Fig. 6 Tethyan tectonic domain in Southeast Asia
图7 东南亚古生物地层对比(据参考文献[ 34 ]修改)
Fig. 7 Comparison of Paleontostratigraphic in Southeast Asiamodified after reference 34 ])
图8 Sibumasu块体地层特征与晚石炭—早二叠世冰渍层(据参考文献文献[ 34 ]修改)
Fig. 8 Stratigraphic characteristics and the Late-Carboniferous to Early-Permian ice layer in Sibumasu blockmodified after reference 34 ])
图9 东南亚山弧构造体系域
Fig. 9 Mountain and arc tectonic domain in Southeast Asia
图10 东南亚挤出逃逸构造体系域
Fig. 10 Extrusion escape tectonic domain in Southeast Asia
图11 东南亚巽他古陆构造体系域
Fig. 11 Sundaland tectonic domain in Southeast Asia
图12 古南海的消亡
Fig. 12 The extinction of the proto-South China Sea
图13 东南亚边缘张裂与边缘海构造体系域及菲律宾岛弧构造体系域
Fig. 13 Extensional rift and marginal sea tectonic domain and Philippine arc domain in Southeast Asia
1 LUAN Xiwu. Petroleum resources of ASEAN[M]. Beijing: China Ocean Press, 2022.
栾锡武.东盟海域油气盆地资源潜力分析[M]. 北京:海洋出版社,2022.
2 LUAN Xiwu. Tectonics and sedimentation of SE Asia [M]. Beijing: China Science Press, 2022.
栾锡武.东南亚构造沉积与油气[M]. 北京:科学出版社,2022.
3 TONG Xiaoguang, YANG Fuzhong. Oil and gas resource and occurrence of PetroChina Block in Indonesia[J]. China Petroleum Exploration, 2005(2): 58-62.
童晓光, 杨福忠. 印尼油气资源及中国石油合同区块现状[J]. 中国石油勘探, 2005(2): 58-62.
4 Ministry of Energy and Mineral Resources. Handbook of energy & economic statistics of Indonesia[R/OL]. Centre for data and information on energy and mineral resources.2012.[2020-08-20]. .
5 WEGENER A. Die Entstehung der Kontinente[J]. Geologische Rundschau, 1912, 3(4): 276-292.
6 HESS H H. Drowned ancient islands of the Pacific basin[J]. American Journal of Science, 1946, 244(11): 772-791.
7 Dietz R S. Continent and ocean basin evolution by spreading of the sea floor[J]. Nature, 1961, 190(4 779): 854-857.
8 HESS H H. History of ocean basins[M]//ENGEL A E J, JAMES H L, LEONARD B F. Petrologic studies. Boulder, America: Geological Society of America, 1962: 599-620.
9 Le PICHON X. Sea-floor spreading and continental drift[J]. Journal of Geophysical Research, 1968, 73(12): 3 661-3 697.
10 MORGAN W J. Rises, trenches, great faults, and crustal blocks[J]. Journal of Geophysical Research, 1968, 73(6): 1 959-1 982.
11 MCKENZIE D P, PARKER R L. The North Pacific: an example of tectonics on a sphere[J]. Nature, 1967, 216(5 122): 1 276-1 280.
12 SLOSS L L. Integrated facies analysis[M]// CHESTER R. Sedimentary facies in geologic history. New York: Geological Society of America, 1949: 91-124.
13 VAIL P R, MITCHUM R M, THOMPSON S. Seismic stratigraphy and global change in sea level, part 3: relative change of sea level from coastal onlap[M]//PAYTON C E. Seismic stratigraphy-applications to hydrocarbon exploration. Okla, America: AAPG Memoir 26, 1977, 26: 63-81.
14 VAIL P R. Seismic stratigraphy interpretation using sequence stratigraphy, part I: seismic stratigraphy interpretation procedure[M]//BALLY A W. Atlas of seismic stratigraphy. Okla, America: AAPG Studies in Geology, 1987, 27:1-10.
15 HAQ B U, HARDENBOL J, VAIL P R. Chronology of fluctuating sea levels since the triassic[J]. Science, 1987, 235(4 793): 1 156-1 167.
16 KERR R A. Refining and defending the Vail Sea Level curve[J]. Science, 1987, 235(4 793): 1 141-1 142.
17 POSAMENTIER H W. Eustatic control on clastic deposition I: conceptual framework[J]. Special Publication Social of Ecomomic Paleontologiests and Mineralogists, 1988, 42: 109-124.
18 POSAMENTIER H W, MORRIS W R. Aspects of the stratal architecture of forced regressive deposits[J]. Geological Society, London, Special Publications, 2000, 172(1): 19-46.
19 SLOSS L L. Sequences in the cratonic interior of North America[J]. Geological Society of America Bulletin, 1963, 74(2): 93-114.
20 LUNT P. The sedimentary geology of Java[M]. Jakarta: Indonesian Petroleum Association, 2013.
21 IEA. Offshore energy outlook 2018[R/OL]. World Energy Outlook Special Report,2018.[2020-08-20]. .
22 UMBGROVE J H F. The pulse of the Earth[M]. Dordrecht, Netherlands: Springer,1942.
23 SUTTON J. Long-term cycles in the evolution of the continents[J]. Nature, 1963, 198(4 882): 731-735.
24 DEWEY J F, BIRD J M. Mountain belts and the new global tectonics[J]. Journal of Geophysical Research, 1970, 75(14): 2 625-2 647.
25 FALVEY D A. The development of continental margins in plate tectonic theory[J]. The Appea Journal, 1974, 14(1):95-106.
26 MCKENZIE D P. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters, 1978, 40(1): 25-32.
27 BALLY A W . margins Continental, geological and geophysical research needs and problems, national research council report[R]. Washington: National Academy of Sciences, 1979.
28 LISTER G S, ETHERIDGE M A, SYMONDS P A. Detachment faulting and the evolution of passive continental margins[J]. Geology, 1986, 14(3): 246-250.
29 FISCHER A G. The two phanerozoic supercycles[M]//BERGGREN W A. Catastrophies and Earth history: the new uniformitarianism. Princeton, America: Princeton University Press, 1984.
30 PIPER J D A, BECKMANN G E J, BADHAM J P N. Palaeomagnetic evidence for a Proterozoic super-continent[J]. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 1976, 280(1 298): 405-416.
31 VALENTINE J W, MOORES E M. Plate-tectonic regulation of faunal diversity and sea level: a model[J]. Nature, 1970, 228(5 272): 657-659.
32 NANCE R D, WORSLEY T R, MOODY J B. Post-Archean biogeochemical cycles and long-term episodicity in tectonic processes[J]. Geology, 1986, 14(6): 514-518.
33 NANCE R D, WORSLEY T R, MOODY J B. The supercontinent cycle[J]. Scientific American, 1988, 259(1): 72-79.
34 METCALFE I. Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66(8): 1-33.
35 BARBER A J, CROW M J. The structure of Sumatra and its implications for the tectonic assembly of Southeast Asia and the destruction of paleotethys[J]. Island Arc, 2009, 18(1): 3-20.
36 METCALFE I. Gondwanaland dispersion, Asian accretion and evolution of Eastern Tethys[J]. Australian Journal of Earth Sciences, 1996,43(6): 605-623.
37 METCALFE I. Asia South-East[M]//RICHARD C. Encyclopedia of geology. Amsterdam: Elsevier, 2005: 169-196.
38 BURRETT C, LONG J. Early-Middle Palaeozoic biogeography of Asian terranes derived from Gondwana[J]. Geological Society London Memoirs, 1990, 12(1): 163-174.
39 METCALFE I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in Context[J]. Gondwana Research, 2006, 9(1/2): 24-46.
40 NICOLL R, TOTTERDELL J M. Conodonts and the distribution in time and space of Ordovician sediments in Australia and adjacent areas[C]//Tenth Australian geological convention. Sydney, Australia: Geological Society of Australia, 1990, 25: 46-47.
41 KLOOTWIJK C. Review of reconstruction models[R]//Phanerozoic configurations of Greater Australia: evolution of the North West Shelf, Part One. Symonston, Australia: AGSO, 1996.
42 KLOOTWIJK C. Palaeomagnetic and geologic constraints on reconstructions[R]//Phanerozoic configurations of Greater Australia: evolution of the North West Shelf, Part Two. Symonston, Australia: AGSO, 1996.
43 KLOOTWIJK C. Palaeomagnetic data base[R]//Phanerozoic configurations of Greater Australia: evolution of the North West Shelf, Part Three. Symonston, Australia: AGSO, 1996.
44 CAI J X, ZHANG K J. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic[J]. Tectonophysics, 2009, 467(1/2/3/4): 35-43.
45 METCALFE I. Pre-Cretaceous evolution of SE Asian terranes[J]. Geological Society, London, Special Publications, 1996, 106(1):97-122.
46 COCKS L R M, FORTEY R A. A new Hirnantia fauna from Thailand and the biogeography of the latest Ordovician of Southeast Asia[J]. Geobios, 1997, 30: 117-126.
47 METCALFE I. Allochthonous terranes-Allochthonous terrane processes in Southeast Asia[J]. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1990, 331(1 620): 625-640.
48 TORSVIK T H, COCKS L R M. The Lower Palaeozoic palaeogeographical evolution of the northeastern and eastern peri-Gondwanan margin from Turkey to New Zealand[J]. Geological Society, London, Special Publications, 2009, 325(1): 3-21.
49 RONG J Y, BOUCOT A J, SU Y Z, et al. Biogeographical analysis of late Silurian brachiopod faunas, chiefly from Asia and Australia[J]. Lethaia, 1995, 28(1): 39-60.
50 WANG C, LIANG X Q, FOSTER D A, et al. Detrital zircon U-Pb geochronology, Lu-Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic[J]. Tectonophysics, 2016,677/678: 125-134.
51 METCALFE I. Permian tectonic framework and palaeogeography of SE Asia[J]. Journal of Asian Earth Sciences, 2002, 20(6): 551-566.
52 METCALFE I. Paleozoic and Mesozoic geological evolution of the SE Asian region: multidisciplinary constrains and implication for biogeography[M]//HALL R. Biogeography and geological evolution of SE Asia. Leiden, Netherlands: Backhuys Publishers, 1998: 25-41.
53 STAUFFER P H, LEE C P, LUMPUR U M K. Late Paleozoic glacial marine facies in Southeast Asia and its implications[J]. Bulletin of the Geological Society of Malaysia, 1986, 20: 363-397.
54 METCALFE I. Palaeozoic-Mesozoic history of SE Asia[J]. Geological Society, London, Special Publications, 2011, 355(1): 7-35.
55 METCALFE I. Tectonic framework and Phanerozoic evolution of Sundaland[J]. Gondwana Research, 2011, 19(1):3-21.
56 GARSON M, YOUNG B, MITCHELL A, et al. The geology of tin belts in peninsular Thailand around Phuket, Phang Naga, and Takua Pa[C]//Overseas memoir, No.1. London: Institute of Geological Survey, 1975: 112.
57 MITCHELL A. Myanmar orogens and flysch, potential for mineral discoveries, and Shan scarps and jade mines cross sections[M]//MITCHELL A. Geological belts, plate boundaries, and mineral deposits in Myanmar. Amsterdam: Elsevier, 2018: 483-495.
58 BARBER A J, CROW M J, MILSOM S. Sumatra: geology, resources and tectonic evolution[M]. London: Geological Society, 31, 2005.
59 ZHU D C, ZHAO Z D, NIU Y L, et al. The Lhasa terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.
60 YANG J S, XU Z Q, LI Z L, et al. Discovery of an eclogite belt in the Lhasa block, Tibet: a new border for Paleo-Tethys?[J]. Journal of Asian Earth Sciences, 2009, 34(1): 76-89.
61 CAMERON W E, NISBET E G, DIETRICH V J. Petrographic dissimilarities between ophiolitic and ocean-floor basalts[C]//PANAYIOTOU B. Ophiolites: proceeding of international ophiolite symposium cyprus 1979. Nicosia, Cyprus: Geological Survey, 1980: 182-192.
62 WAJZER M R, BABER A J, HIDAYAT S T, et al. Accretion, collision and strike-slip faulting: the Woyla Group as a key to the tectonic evolution of North Sumatra[J]. Journal of Southeast Asian Earth Sciences, 1991, 6(3/4): 447-461.
63 BARBER A J, CROW M J. An evaluation of plate tectonic models for the development of Sumatra[J]. Gondwana Research, 2003, 6(1): 1-28.
64 BARBER A J. The origin of the Woyla Terranes in Sumatra and the Late Mesozoic evolution of the Sundaland margin[J]. Journal of Asian Earth Sciences, 2000, 18(6): 713-738.
65 ZAW K, SWE W, BARBEI A J, et al. Myanmar offer-Myanmar: geology, resources and tectonics[R]//Myanmar: geology, resources and tectonic. London: The Geological Society of London, 2017.
66 METCALFE I. Multiple Tethyan ocean basins and orogenic belts in Asia[J]. Gondwana Research, 2021, 100: 87-130.
67 HELMCKE D. The orogenic evolution (Permian-Triassic) of central Thailand. Implications on paleogeographic models for mainland SE-Asia[J]. Bulletin de la Societe Géologique de France, 1984, 147: 83-91.
68 HELMCKE D. The Permo-Triassic 》Paleotethys《 in mainland Southeast-Asia and adjacent parts of China[J]. Geologische Rundschau, 1985, 74(2): 215-228.
69 HELMCKE D. Distribution of Permian and Triassic syn-orogenic sediments in central mainland SE-Asia[C]//ANGSUWATHANA P. Proceedings of the international symposium on stratigraphic correlation of Southeast Asia. Bangkok, Thailand: Department of Mineral Resources, 1994: 123-128.
70 DRUMM A, HEGGEMANN H, HELMCKE D. Contribution to the sedimentology and sedimentary petrology of the non-marine Mesozoic sediments in northern Thailand (Phrae and Nan Provinces)[C]//THANSUTHIPITAK T. Proceedings of the international symposium on biostratigraphy of mainland Southeast Asia: Facies and paleontology. Chiang Mai, Thailand, 1993: 299-318.
71 ZHU Dicheng, PAN Guitang, MO Xuanxue, et al. The age of collision between India and Eurasia[J]. Advances in Earth Science, 2004,19(4): 564-571.
朱弟成, 潘桂棠, 莫宣学, 等. 印度大陆和欧亚大陆的碰撞时代[J]. 地球科学进展, 2004, 19(4): 564-571.
72 CHUNG S L, CHU M F, ZHANG Y Q, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth Science Reviews, 2005, 68(3/4):173-196.
73 HOU Zengqian, MO Xuanxue, GAO Yongfeng, et al. Early processes and tectonic model for the Indian-Asian continental collision: evidence from the Cenozoic Gangdese igneous rocks in Tibet[J]. Acta Geologica Sinica, 2006, 80(9): 1 233-1 248.
侯增谦, 莫宣学, 高永丰, 等. 印度大陆与亚洲大陆早期碰撞过程与动力学模型——来自西藏冈底斯新生代火成岩证据[J]. 地质学报, 2006, 80(9): 1 233-1 248.
74 HU Xiumian, WANG Jiangang, AN Wei, et al. Constraining the timing of the India-Asia continental collision by the sedimentary record[J]. Science China: Earth Sciences, 2017, 47(3): 261-283.
胡修棉, 王建刚, 安慰, 等. 利用沉积记录精确约束印度—亚洲大陆碰撞时间与过程[J]. 中国科学:地球科学, 2017, 47(3): 261-283.
75 REPLUMAZ A, NEGREDO A M, GUILLOT S, et al. Multiple episodes of continental subduction during India/Asia convergence: insight from seismic tomography and tectonic reconstruction[J]. Tectonophysics, 2010, 483(1/2): 125-134.
76 KAMESHRAJU K A. Three-phase tectonic evolution of the Andaman backarc basin[J]. Current Science, 2005, 89(11): 1 932-1 937.
77 DING Lin, MAKSATBEK S, CAI Fulong, et al. Processes of initial collision and suturing between India and Asia[J]. Science China: Earth Sciences, 2017, 47(3): 293-309.
丁林, MAKSATBEK S, 蔡福龙, 等. 印度与欧亚大陆初始碰撞时限、封闭方式和过程[J]. 中国科学:地球科学, 2017, 47(3): 293-309.
78 LUAN Xiwu, ISLAM M S, WEI Xinyuan, et al. Hydrocarbon accumulation in an active accretionary prism, a case study in the deepwater Rakhine Basin, Myanmar offshore[J]. Journal of Asian Earth Sciences, 2021, 221: 104941.
79 LUAN Xiwu, LU Yintao, FAN Guozhang, et al. Deep-water sedimentation controlled by interaction between bottom current and gravity flow: a case study of Rovuma Basin, East Africa[J]. Journal of African Earth Sciences, 2021, 180: 104228.
80 LUAN Xiwu, LUNT P. Controls on Early Miocene carbonate and siliciclastic deposition in eastern Java and south Makassar Straits, Indonesia[J]. Journal of Asian Earth Sciences, 2022, 227: 105091.
81 LUAN Xiwu, LUNT P. Latest Eocene and Oligocene tectonic controls on carbonate deposition in eastern Java and the south Makassar Straits, Indonesia[J]. Journal of Asian Earth Sciences, 2021, 220: 104900.
82 LUAN Xiwu, LUNT P. Eocene to Miocene stratigraphic controls in the far East Java Sea: implication for stratigraphic studies[J]. Marine Geology, 2021, 436: 106479.
83 LUAN Xiwu, LUNT P. Occurrence in space and time of the Globigerina-sands of eastern Java; their stratigraphy, and controls on reservoir quality[J]. Marine and Petroleum Geology, 2021, 133: 105311.
84 POWNALL J M, HALL R, LISTER G S. Rolling open Earth's deepest forearc basin[J]. Geology, 2016, 44(11): 947-950.
85 XU Zhiqin, WANG Qin, LI Zhonghai, et al. Indo-Asian collision: tectonic transition from compression to strike slip[J]. Acta Geologica Sinica, 2016, 90(1): 1-23.
许志琴, 王勤, 李忠海, 等. 印度—亚洲碰撞: 从挤压到走滑的构造转换[J]. 地质学报, 2016, 90(1): 1-23.
86 HOUSEMAN G, ENGLAND P. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B7): 12 233-12 249.
87 MOLNAR P, TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 1975, 189(4 201): 419-426.
88 TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616.
89 FAURE M, LEPVRIER C, NGUYEN V V, et al. The South China block-IndoChina collision: where, when, and how?[J]. Journal of Asian Earth Sciences, 2014, 79: 260-274.
90 TAPPONNIER P, XU Z, ROGER E, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294: 1 671-1 677.
91 XU Zhiqin, LI Sitian, ZHANG Jianxin, et al. Paleo-Asian and Tethyan tectonic systems with docking the Tarim block[J]. Acta Petrologica Sinica, 2011, 27(1): 1-22.
许志琴, 李思田, 张建新, 等. 塔里木地块与古亚洲/特提斯构造体系的对接[J]. 岩石学报, 2011, 27(1): 1-22.
92 COPLEY A, AVOUAC J P, ROYER J Y. India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B3): B03410.
93 ROYDEN L H, BURCHFIEL B C, HILST R D VAN DER. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5 892): 1 054-1 058.
94 LUAN Xiwu, PENG Xuechao, WANG Yingmin, et al. Characteristics of sand waves on the northern South China Sea shelf and its formation[J]. Acta Geologica Sinica, 2010, 84(2): 233-245.
栾锡武, 彭学超, 王英民, 等. 南海北部陆架海底沙波基本特征及属性[J]. 地质学报, 2010, 84(2): 233-245.
95 GONG Wei, LI Chaoyang, JIANG Xiaodian. Connection between uplifting of the Tibetan Plateau and opening of the South China Sea (SCS): the basin-mountain coupling in the northwestern margin of the SCS[J]. Earth Science Frontiers, 2017, 24(4): 268-283.
宫伟, 李朝阳, 姜效典. 青藏高原隆升与南海开启:南海西北部盆—山耦合体系[J]. 地学前缘, 2017, 24(4): 268-283.
96 YANG Qijun, XU Yigang, HUANG Xiaolong, et al. Geochronology and geochemistry of granites in the Gaoligong tectonic belt, western Yunnan: tectonic implications[J]. Acta Petrologica Sinica, 2006, 22(4): 817-834.
杨启军, 徐义刚, 黄小龙, 等. 高黎贡构造带花岗岩的年代学和地球化学及其构造意义[J]. 岩石学报, 2006, 22(4): 817-834.
97 LI Huaqi, XU Zhiqin, CAI Zhihui, et al. Indosinian epoch magmatic event and geological significance in the Tengchong block, western Yunnan Province[J]. Acta Petrologica Sinica, 2011,27(7): 2 165-2 172.
李化启, 许志琴, 蔡志慧, 等. 滇西三江构造带西部腾冲地块内印支期岩浆热事件的发现及其地质意义[J]. 岩石学报, 2011, 27(7): 2 165-2 172.
98 XU Z Q, JI S C, CAI Z H, et al. Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: constraints from deformation, fabrics and geochronology[J]. Gondwana Research, 2012, 21(1): 19-36.
99 ZHANG Shiqi, QI Xuexiang, WEI Cheng, et al. Eocene magmatism in the Gaoligong orogen, southwestern Yunnan, and its response to the collision of the India-Eurasia[J]. Acta Petrologica Sinica, 2017, 33(12): 3 842-3 860.
张诗启, 戚学祥, 韦诚, 等. 滇西高黎贡造山带始新世岩浆活动及其对印度板块与欧亚大陆碰撞的响应[J]. 岩石学报, 2017, 33(12): 3 842-3 860.
100 REPLUMAZ A, TAPPONNIER P. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B6): 1-24.
101 SATO K, LIU Y Y, ZHU Z C, et al. Paleomagnetic study of middle Cretaceous rocks from Yunlong, western Yunnan, China: evidence of southward displacement of Indochina[J]. Earth and Planetary Science Letters, 1999, 165(1): 1-15.
102 FUNAHARA S, NISHIWAKI N, MURATA F, et al. Clockwise rotation of the Red River fault inferred from paleomagnetic study of Cretaceous rocks in the Shan-Thai-Malay block of Western Yunnan, China[J]. Earth and Planetary Science Letters, 1993, 117(1/2): 29-42.
103 SATO K, LIU Y Y, WANG Y B, et al. Paleomagnetic study of Cretaceous rocks from Pu'er, western Yunnan, China: evidence of internal deformation of the Indochina block[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 1-15.
104 ZHANG B, ZHANG J J, ZHONG D L, et al. Polystage deformation of the Gaoligong metamorphic zone: structures, 40Ar/39Ar mica ages, and tectonic implications[J]. Journal of Structural Geology, 2012, 37: 1-18.
105 AN Chunzhi, YANG Zhenyu, TONG Yabo, et al. Eocene paleomagnetic inclination shallowing in Simao area of the Indochina block and its tectonic implication[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2): 511-525.
安纯志,杨振宇,仝亚博, 等. 印支地块思茅地区始新统磁倾角偏低现象及其构造意义[J].吉林大学学报(地球科学版), 2017, 47(2): 511-525.
106 KORNFELD D, ECKERT S, APPEL E, et al. Cenozoic clockwise rotation of the Tengchong block, southeastern Tibetan Plateau: a paleomagnetic and geochronologic study[J]. Tectonophysics, 2014, 628: 105-122.
107 JI Jianqing, ZHONG Dalai, ZHANG Liansheng. Kinematics and dating of Cenozoic strike-slip faults in the Tengchong area, West Yunnan: implications for the block movement in the Southeastern Tibet Plateau[J]. Chinese Journal of Geology, 2000,35(3): 336-349.
季建清, 钟大赉, 张连生. 滇西南新生代走滑断裂运动学、年代学、及对青藏高原东南部块体运动的意义[J]. 地质科学, 2000,35(3): 336-349.
108 LELOUP P H, LACASSIN R, TAPPONNIER P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 1995, 251 (1/2/3/4): 3-84.
109 AKCIZ S, BURCHFIEL B C, CROWLEY J L, et al. Geometry, kinematics, and regional significance of the Chong Shan shear zone, Eastern Himalayan Syntaxis, Yunnan, China[J]. Geosphere, 2008, 4(1): 292-314.
110 XU Z Q, WANG Q, CAI Z H, et al. Kinematics of the Tengchong terrane in SE Tibet from the late Eocene to early Miocene: insights from coeval mid-crustal detachments and strike-slip shear zones[J]. Tectonophysics, 2015, 665: 127-148.
111 LEE H Y, CHUNG S L, WANG J R, et al. Miocene Jiali faulting and its implications for Tibetan tectonic evolution[J]. Earth and Planetary Science Letters, 2003, 205(3/4): 185-194.
112 ZHANG B, ZHANG J J, CHANG Z F, et al. The Biluoxueshan transpressive deformation zone monitored by synkinematic plutons, around the Eastern Himalayan Syntaxis[J]. Tectonophysics, 2012, 574/575: 158-180.
113 WANG Guozhi, HU Ruizhong, FANG Weixuan, et al. Strike-slip deformation in Lancang River fault zone and relationship with GE ORE deposit in Linchang, Yunnan[J]. Acta Mineralogica Sinica, 2001,21(4): 695-698.
王国芝, 胡瑞忠, 方维萱, 等. 澜沧江断裂带走滑变形及与临沧锗矿的关系[J]. 矿物学报, 2001, 21 (4): 695-698.
114 CHEN Xinyue, WANG Yuejun, FAN Weiming, et al. Microstructural characteristics of Chongshan shear zones in Yunnan province and 40Ar-39Ar geochronological constraints[J]. Geotectonica et Metallogenia, 2006, 30(1): 41-51.
陈新跃, 王岳军, 范蔚茗, 等. 云南崇山剪切断裂系显微构造特征及其40Ar-39Ar年代学约束[J]. 大地构造与成矿学, 2006, 30(1): 41-51.
115 TANG Yuan, YIN Fuguang, WANG Liquan, et al. Structural characterization of and geochronological constraints on sinistral strike-slip shearing along the southern segment of Chongshan shear zone, western Yunnan[J]. Acta Petrologica Sinica, 2013, 29(4): 1 311-1 324.
唐渊, 尹福光, 王立全, 等. 滇西崇山剪切带南段左行走滑作用的构造特征及时代约束[J]. 岩石学报, 2013, 29(4): 1 311-1 324.
116 TAPPONNIER P, LACASSIN R, LELOUP P H, et al. The Ailao Shan/Red river metamorphic belt: tertiary left-lateral shear between Indochina and South China[J]. Nature, 1990, 343(6 257): 431-437.
117 LELOUP P H, ARNAUD N, LACASSIN R, et al. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red river shear zone, SE Asia[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B4): 6 683-6 732.
118 LIU Q Y, HILST R D VAN DER, LI Y, et al. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults[J]. Nature Geoscience, 2014, 7(5): 361-365.
119 YANG Wencai, HOU Zunze, XU Yixian, et al. A study on thermal deformation and lower crust channel flows in Qinghai-Xizang (Tibet) Plateau[J]. Geological Review, 2017, 63(5): 1 141-1 152.
杨文采, 侯遵泽, 徐义贤, 等. 青藏高原下地壳热变形和管道流研究[J]. 地质论评, 2017, 63(5): 1 141-1 152.
120 WU Zhonghai, LONG Changxing, FAN Taoyuan, et al. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 2015, 34(1): 1-31.
吴中海, 龙长兴, 范桃园, 等. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报, 2015, 34(1): 1-31.
121 SONE M, METCALFE I. Parallel Tethyan sutures in mainland Southeast Asia: new insights for Palaeo-Tethys closure and implications for the Indosinian orogeny[J]. Comptes Rendus Geoscience, 2008, 340: 166-179.
122 ZHANG B, ZHANG J J, ZHONG D L. Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China[J]. Journal of Structural Geology, 2010, 32(4): 445-463.
123 KANJANAPAYONT P, KIEDUPPATUM P, KLOTZLI U, et al. Deformation history and U-Pb zircon geochronology of the high grade metamorphic rocks within the Klaeng fault zone, eastern Thailand[J]. Journal of Asian Earth Sciences, 2013, 77: 224-233.
124 BARBER A J, ZAW K, CROW M J. Myanmar: geology, resources and tectonics[M]. London: Geological Society, 2017.
125 HENNIG J, HALL R, ARMSTRONG R. U-Pb zircon geochronology of rocks from west Central Sulawesi, Indonesia: extension-related metamorphism and magmatism during the early stages of mountain building[J]. Gondwana Research, 2015, 32: 41-63.
126 MAO W, ZHONG H, YANG J, et al. Combined zircon, molybdenite, and cassiterite geochronology and cassiterite geochemistry of the Kuntabin Tin-Tungsten deposit in Myanmar[J]. Ecomonic Geology, 2019, 115(3): 1-23.
127 TRAN T V, FAURE M, NGUYEN V V, et al. Neoproterozoic to Early Triassic tectono-stratigraphic evolution of Indochina and adjacent area: a review with new data[J]. Journal of Asian Earth Sciences, 2020, 191:104231.
128 KATILI J A. Volcanism and plate tectonics in the Indonesian island arcs[J]. Tectonophysics, 1975, 26(3/4): 165-188.
129 HAMILTON W B. Tectonics of the Indonesian region[J]. Bulletin of the Geological Society of Malaysia, 1979, 6: 3-10.
130 HUTCHISON C S. Geological evolution of south-east Asia[M]. Oxford: Clarendon Press, 1989.
131 HUTCHISON C S. The 'Rajang accretionary prism' and 'Lupar Line' problem of Borneo[J]. Geological Society, London, Special Publications, 1996, 106(1): 247-261.
132 HUTCHISON C S. Oroclines and paleomagnetism in Borneo and south-east Asia[J]. Tectonophysics, 2010, 496(1/2/3/4): 53-67.
133 HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431.
134 HALL R, BREITFELD H T. Nature and demise of the Proto-South China Sea[J]. Bulletin of the Geological Society of Malaysia, 2017, 63: 61-76.
135 HALL R, CLEMENTS B, SMYTH H R. Sundaland: basement character, structure and plate tectonic development[C]//Proceedings, Indonesian Petroleum Association 33rd Annual Convention & Exhibition, IPA09-G-134. Jakarta, Indonesia: IPA, 2009: 1-27.
136 LIEW T C, MCCULLOCH M T. Genesis of granitoid batholiths of peninsular malaysia and implications for models of crustal evolution: evidence from a Nd-Sr isotopic and U-Pb zircon study[J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 587-600.
137 LIEW T C, PAGE R W. U-Pb zircon dating of granitoid plutons from the west coast province of peninsular Malaysia[J]. Journal of the Geological Society, 1985, 142(3): 515-526.
138 BERGMAN S C, COFFIELD D Q, TALBOT J P, et al. Tertiary tectonic and magmatic evolution of western Sulawesi and the Makassar strait, Indonesia: evidence for a Miocene continent-continent collision[J]. Geological Society, London, Special Publications, 1996, 106(1): 391-429.
139 BARLEY M E, PICKARD A L, ZAW K, et al. Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India-Eurasia collision in Myanmar[J]. Tectonics, 2003, 22(3): 1-11.
140 ELBURG M, LEEUWEN T VAN, FODEN J. Spatial and temporal isotopic domains of contrasting igneous suites in western and northern Sulawesi, Indonesia[J]. Chemical Geology, 2003, 199(3): 243-276.
141 SUGIAMAN F, ANDRIA L. Devonian carbonate of Telen river, East Kalimantan[J]. Berita Sedimentologi, 1999, 10: 18-19.
142 HALL R, WILSON M E J. Neogene sutures in eastern Indonesia[J]. Journal of Asian Earth Sciences, 2000, 18(6): 781-808.
143 LEEUWEN T VAN, ALLEN C M, KADARUSMAN A, et al. Petrologic, isotopic, and radiometric age constraints on the origin and tectonic history of the Malino Metamorphic Complex, NW Sulawesi, Indonesia[J]. Journal of Asian Earth Sciences, 2007, 29(5/6): 751-777.
144 SMYTH H R, HAMILTON P J, HALL R, et al. The deep crust beneath island arcs: inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 269-282.
145 SIMONS W J F, SOCQUET A, VIGNY C, et al. A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B06420): 1-20.
146 SEARLE M P, WHITEHOUSE M J, ROBB L J, et al. Tectonic evolution of the Sibumasu-Indochina terrane collision zone in Thailand and Malaysia: constraints from new U-Pb zircon chronology of SE Asian tin granitoids[J]. Journal of the Geological Society, 2012, 169(4): 489-500.
147 PARKINSON C D, MIYAZAKI K, WAKITA K, et al. An overview and tectonic synthesis of the pre-Tertiary very high-pressure metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia[J]. Island Arc, 1998, 7(1/2): 184-200.
148 EMMET P A, GRANATH J W, DINKELMAN M G. Pre-Tertiary sedimentary "keels" provide insights into tectonic assembly of basement terranes and present-day petroleum systems of the East Java Sea[C]//Proceedings, Indonesian Petroleum Association 33rd Annual Convention & Exhibition, IPA09-G-046. Jakarta, Indonesia: IPA, 2009: 1-11.
149 GRANATH J W, CHRIST J M, EMMET P A, et al. Pre-Cenozoic sedimentary section and structure as reflected in the Java SPANTM crustal-scale PSDM seismic survey, and its implications regarding the basement terranes in the East Java Sea[J]. Geological Society, London, Special Publications, 2011, 355(1): 53-74.
150 LUAN Xiwu, WANG Jia, LIU Hong, et al. Tethyis in northern margin of South China Sea[J]. Journal of Earth Science, 2020, 46(3):866-884.
栾锡武,王嘉,刘鸿,等. 关于南海北部特提斯的讨论[J]. 地球科学, 2020, 46(3):866-884.
151 LUAN Xiwu, ZHANG Liang. The model of tectonic evolution of South China Sea[J]. Marine Geology and Quataneray Geology, 2009, 29(6): 59-74.
栾锡武,张亮. 南海构造演化模式——综合作用下的被动扩张[J]. 海洋地质与第四纪地质, 2009, 29(6): 59-74.
152 HALL R, ALI J R, ANDERSON C D, et al. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 1995, 251(1/2/3/4): 229-250.
153 GILLEY L D, HARRISON T M, LELOUP P H, et al. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B2): 2127.
154 SCHÄRER U, TAPPONNIER P, LACASSIN R, et al. Intraplate tectonics in Asia: a precise age for large-scale Miocene movement along the Ailao Shan-Red River shear zone, China[J]. Earth and Planetary Science Letters, 1990, 97(1/2): 65-77.
155 MAZUR S, GREEN C, STEWART M G, et al. Displacement along the Red River fault constrained by extension estimates and plate reconstructions[J]. Tectonics, 2012, 31(5): TC5008.
156 BERGMAN S C, LELOUP P H, TAPPONNIER P. Apatite fission track thermal history of the Ailao Shan-Red River shear zone, China[C]. Strasbourg, France: Meeting of the European Union of Geosciences, 1997.
157 LELOUP P H, HARRISON T M, RYERSON F J, et al. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6 715-6 743.
158 ALLEN C R, GILLESPIE A R, HAN Y, et al. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard[J]. Geological Society of America Bulletin, 1984, 95(6): 686-700.
159 REPLUMAZ A, LACASSIN R, TAPPONNIER P, et al. Large river offsets and Plio- Quaternary dextral slip rate on the Red River fault (Yunnan, China)[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B1): 819-836.
160 FYHN M B W, BOLDREEL L O, NIELSEN L H. Geological development of the Central and South Vietnamese margin: implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism[J]. Tectonophysics, 2009, 478(3/4): 184-214.
161 FYHN M B W, NIELSEN L H, BOLDREEL L O, et al. Geological evolution, regional perspectives and hydrocarbon potential of the northwest Phu Khanh Basin, offshore Central Vietnam[J]. Marine and Petroleum Geology, 2009, 26(1): 1-24.
162 LETOUZEY J, WERNER P, MARTY A. Fault reactivation and structural inversion. Backarc and intraplate compressive deformations. Example of the eastern Sunda shelf (Indonesia)[J]. Tectonophysics, 1990, 183(1/2/3/4): 341-362.
163 LEE T Y, LAWVER L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251(1/2/3/4): 85-138.
164 WU J, SUPPE J, LU R. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4 670-4 741.
165 KASUGA S, OHARA Y. A new model of back-arc spreading in the Parece Vela basin, northwest Pacific margin[J]. Island Arc, 1997, 6(3): 316-326.
166 OKINO K, OHARA Y, KASUGA S, et al. The Philippine Sea: new survey results reveal the structure and the history of the marginal basins[J]. Geophysical Research Letters, 1999, 26(15): 2 287-2 290.
167 FULLER M, ALI J R, MOSS S J, et al. Paleomagnetism of Borneo[J]. Journal of Asian Earth Sciences, 1999, 17(1/2): 3-24.
168 HASTON R B, FULLER M. Paleomagnetic data from the Philippine Sea Plate and their tectonic significance[J]. Journal of Geophysical Research, 1991, 96(B4): 6 073-6 098.
169 RICHTER C, ALI J R. Philippine Sea Plate motion history: Eocene-Recent record from ODP site 1201, central West Philippine basin[J]. Earth and Planetary Science Letters, 2015, 410: 165-173.
170 YAMAZAKI T, TAKAHASHI M, IRYU Y, et al. Philippine Sea plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores[J]. Earth, Planets and Space, 2010, 62(6): 495-502.
171 ZAHIROVIC S, SETON M, MÜLLER R D. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia[J]. Solid Earth, 2014, 5(1): 227-273.
172 SHAO L, CAO L C, QIAO P J, et al. Cretaceous-Eocene provenance connections between the Palawan continental terrane and the northern South China Sea margin[J]. Earth and Planetary Science Letters, 2017, 477: 97-107.
173 TAYLOR B, HAYES D E. The tectonic evolution of the South China Sea basin[M]//HAYES D E. The Tectonic and geologic evolution of Southeast Asian seas and islands, Geophysical Monograph Series, 23. Washington, D. C., America: American Geophysical Union, 1980: 89-104.
174 TAYLOR B, HAYES D E. Origin and history of the South China Sea basin[M]//HAYES D E. The tectonic and geologic evolution of Southeast Asian seas and islands, Geophysical Monograph Series, 27. Washington, D. C., America: American Geophysical Union, 1983: 23-56.
175 HUTCHISON C S, BERGMAN S C, SWAUGER D A, et al. A Miocene collisional belt in north Borneo: uplift mechanism and isostatic adjustment quantified by thermochronology[J]. Journal of the Geological Society, 2000, 157(4): 783-793.
176 SIBUET J C, YEH Y C, LEE C S. Geodynamics of the South China Sea[J]. Tectonophysics, 2016, 692: 98-119.
177 LONGLEY I M. The tectonostratigraphic evolution of SE Asia[J]. Geological Society, London, Special Publications, 1997, 126(1): 311-339.
178 CULLEN A, REEMST P, HENSTRA G, et al. Rifting of the South China Sea: new perspectives[J]. Petroleum Geoscience, 2010, 16 (3): 273-282.
179 HALL R. Reconstructing Cenozoic SE Asia[J]. Geological Society, London, Special Publications, 1996, 106(1): 153-184.
180 RANGIN C, JOLIVET L, PUBELLIER M. A simple model for the tectonic evolution of southeast Asia and Indonesia region for the past 43 m.y[J]. Bulletin de la Société Géologique de France, 1990, VI(6): 889-905.
181 HSU S K, YEH Y C, DOO W B, et al. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications[J]. Marine Geophysical Researches, 2004, 25(1/2): 29-44.
182 RANGIN C, KLEIN M, ROQUES D, et al. The Red River fault system in the Tonkin Gulf, Vietnam[J]. Tectonophysics, 1995, 243(3/4): 209-222.
183 PUBELLIER M, ALI J, MONNIER C. Cenozoic plate interaction of the Australia and Philippine Sea plates: "Hit-and-Run" tectonics[J]. Tectonophysics, 2003, 363 (3/4): 181-199.
184 BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research, 1993, 98(B4): 6 299-6 328.
185 BARCKHAUSEN U, ROESER H. Seafloor spreading anomalies in the South China Sea revisited[J]. Geophysical Monograph Series, 2004, 149: 121-125.
186 BARCKHAUSEN U, ENGELS M, FRANKE D, et al. Evolution of the South China Sea: revised ages for breakup and seafloor spreading[J]. Marine and Petroleum Geology, 2014, 58: 599-611.
187 LI C, XU X, LIN J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4 958-4 983.
188 FRANKE D. Rifting, lithosphere breakup and volcanism: comparison of magmapoor and volcanic rifted margins[J]. Marine and Petroleum Geology, 2013, 43: 63-87.
189 FRANKE D, SAVVA D, PUBELLIER M, et al. The final rifting evolution in the South China Sea[J]. Marine and Petroleum Geology, 2014, 58: 704-720.
190 LIN A T, WATTS A B, HESSELBO S P. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region[J]. Basin Research, 2003, 15(4): 453-478.
191 ZHOU D, RU K, CHEN H Z. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251(1/2/3/4): 161-177.
192 LARSEN H C, MOHN G, NIRRENGARTEN M, et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. Nature Geoscience, 2018, 11(10): 782-789.
193 SUN Z, JIAN Z, STOCK J M, et al. Proceedings of the international ocean discovery program volume 367/368: South China Sea rifted margin[R]. Shanghai: International Ocean Discovery Program, College Station, TX, 2018.
194 DING W W, SUN Z, DADD K, et al. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes[J]. Earth and Planetary Science Letters, 2018, 488: 115-125.
195 RANGIN C, SILVER E A, BREYMANN M T VON, et al. Proceedings of the Ocean Drilling Program, 124 Initial Reports[R]. College Station TX, America: Ocean Drilling Program, 1990.
196 ENCARNACIÓN J P, ESSENE E J, MUKASA S B, et al. High-pressure and temperature subophiolitic kyanite-garnet amphibolites generated during Initiation of Mid Tertiary subduction, Palawan, Philippines[J]. Journal of Petrology, 1995, 36(6): 1 481-1 503.
197 BERGMAN S C, HUTCHISON C S, SWAUGER D A, et al. K∶Ar ages and geochemistry of the Sabah Cenozoic volcanic rocks[J]. Bulletin of the Geological Society of Malaysia, 2000, 44: 165-171.
198 WEISSEL J K. Evidence for Eocene oceanic crust in the Celebes basin[M]//HAYES D E. The tectonic and geologic evolution of Southeast Asian seas and sslands. Washington, D. C., America: American Geophysical Union Geophysical Monograph Series, 23, 1980: 37-47.
199 PARSONS B, SCLATER J G. An analysis of the variation of ocean floor bathymetry and heat flow with age[J]. Journal of Geophysical Research, 1976, 82(5): 803-827.
200 MROZOWSKI C L, LEWIS S D, HAYES D E. Complexities in the tectonic evolution of the west Philippine Basin[J]. Tectonophysics, 1982, 82(1/2): 1-24.
201 HALL R. The subduction initiation stage of the Wilson cycle[C]//WILSON R W. Fifty years of the Wilson cycle concept in Plate Tectonics, 470. London: Geological Society, 2019: 415-438.
202 SURMONT J, LAJ C, KISSEL C, et al. New paleomagnetic constraints on the Cenozoic tectonic evolution of the north arm of Sulawesi, Indonesia[J]. Earth and Planetary Science Letters, 1994, 121(3/4): 629-638.
203 HENNIG J, HALL R, FORSTER M A, et al. Rapid cooling and exhumation as a consequence of extension and crustal thinning: inferences from the Late Miocene to Pliocene Palu Metamorphic Complex, Sulawesi, Indonesia[J]. Tectonophysics, 2017, 712/713: 600-622.
204 OTOFUJI Y I, SASAJIMA S, NISHIMURA S, et al. Paleomagnetic evidence for the paleoposition of Sumba island, Indonesia[J]. Earth and Planetary Science Letters, 1981, 52(1): 93-100.
205 WALPERSDORF A, RANGIN C, VIGNY C. GPS compared to long-term geologic motion of the north arm of Sulawesi[J]. Earth and Planetary Science Letters, 1998, 159(1/2): 47-55.
206 MCCAFFREY R. Lithospheric deformation within the Molucca Sea arc-arc collision: evidence from shallow and intermediate earthquake activity[J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B5): 3 663-3 678.
207 WIDIYANTORO S, HILST R VAN DER. Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging[J]. Geophysical Journal International, 1997, 130(1): 167-182.
208 LALLEMAND S E, POPOFF M, CADET J P, et al. Genetic relations between the central and southern Philippine trench and the Sangihe trench[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B1): 933-950.
209 HINSCHBERGER F, MALOD J A, RÉHAULT J P, et al. Late Cenozoic geodynamic evolution of eastern Indonesia[J]. Tectonophysics, 2005, 404(1/2): 91-118.
210 WEI Xinyuan, LUAN Xiwu, RAN Weimin, et al. Faults characteristics and tectonics of Timor Sea[J]. Geological Bulletin, 2021, 40(2/3): 364-375.
魏新元,栾锡武,冉伟民, 等.东帝汶海断裂特征与构造演化模式[J].地质通报,2021,40(2/3):364-375.
211 HINSCHBERGER F, MALOD J A, DYMENT J, et al. Magnetic lineations constraints for the back-arc opening of the Late Neogene south Banda basin(eastern Indonesia)[J]. Tectonophysics, 2001, 333(1/2): 47-59.
212 HALL R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 2012, 570/571: 1-41.
213 LU Yintao, LUAN Xiwu, SHI Buqing, et al. Characteristics of Lower Miocene marine petroleum play and prospective petroleum accumulation region in the Kutei Basin, the Kalimantan Island[J]. Marine Sciences, 2019, 43(1): 38-49.
鲁银涛, 栾锡武, 史卜庆, 等. 加里曼丹岛库泰盆地海相成藏组合特征及油气富集区分带性分析[J]. 海洋科学, 2019, 43(1): 38-49.
214 LU Yintao, LUAN Xiwu, SHI Boqing, et al. Feature analysis of oil and gas samples from well naga utara-1 in the kutei basin, Kalimantan Island[J]. Acta Geologica Sinica, 2017, 91(4): 928-941.
鲁银涛,栾锡武,史卜庆,等.加里曼丹岛库泰盆地NgaUtara-1井下中新统油气样品特征分析[J]. 地质学报, 2017, 91(4): 928-941.
215 KATILI J A. A review of the geotectonic theories and tectonic maps of Indonesia[J]. Earth-Science Reviews, 1971, 7(3): 143-163.
216 FAURE M, MARCHADIER Y, RANGIN C. Pre-Eocene synmetamorphic structure in the Mindoro-Romblon-Palawan area, west Philippines, and implications for the history of Southeast Asia[J]. Tectonics, 1989, 8(5): 963-979.
217 RANGIN C. The Philippine mobile belt: a complex plate boundary[J]. Journal of Southeast Asian Earth Sciences, 1991, 6(3/4): 209-220.
218 AURELIO M A. Shear partitioning in the Philippines: constraints from Philippine fault and global positioning system data[J]. Island Arc, 2000, 9: 584-597.
219 WALIA M, KNITTEL U, SUZUKI S, et al. No Paleozoic metamorphics in Palawan (the Philippines)? Evidence from single grain U-Pb dating of detrital zircons[J]. Journal of Asian Earth Sciences, 2012, 52: 134-145.
220 AURELIO M A, PEÑA R E, TAGUIBAO K J L. Sculpting the Philippine archipelago since the Cretaceous through rifting, oceanic spreading, subduction, obduction, collision and strike-slip faulting: contribution to IGMA5000[J]. Journal of Asian Earth Sciences, 2013, 72: 102-107.
221 KARIG D E, SAREWITZ D R, HAECK G D. Role of strike- slip faulting in the evolution of allochthonous terranes in the Philippines[J]. Geology, 1986, 14(10): 852-855.
222 HUANG C Y, WANG P X, YU M M, et al. Potential role of strike-slip faults in opening up the South China Sea[J]. National Science Review, 2019, 6: 891-901.
223 YUMUL G P Jr. Westward younging disposition of Philippine ophiolites and its implication for arc evolution[J]. Island Arc, 2007, 16(2): 306-317.
224 FLORENDO F F. Tertiary arc rifting in Northern Luzon, Philippines[J]. Tectonics,1994, 13(3): 623-640.
225 YUMUL G P Jr, DIMALANTA C B, GABO-RATIO J A S, et al. Mesozoic rock suites along western Philippines: exposed proto-South China Sea fragments?[J]. Journal of Asian Earth Sciences, 2020, X4: 100031.
226 ENCARNACIÓN J P, MUKASA S B, OBILLE JR E C. Zircon U-Pb Geochronology of the Zambales and Angat Ophiolites, Luzon, Philippines-evidence for an Eocene Arc- Back Arc Pair[J]. Journal of Geophysical Research: Solid Earth, 1993, 98: 19 991-20 004.
227 QUEAÑO K L, DIMALANTA C B, YUMUL G P Jr, et al. Stratigraphic units overlying the Zambales Ophiolite Complex (ZOC) in Luzon, (Philippines): tectonostratigraphic significance and regional implications[J]. Journal of Asian Earth Sciences, 2017b, 142: 20-31.
228 LABIS F A C, PAYOT B D, VALERA G T V, et al. Melt-rock interaction in the subarc mantle: records from the plagioclase peridotites of the southern Palawan Ophiolite, Philippines[J]. International Geology Review, 2021, 63(9): 1 067-1 089.
229 WU J, SUPPE J. Proto-South China Sea plate tectonics using subducted slab constraints from tomography[J]. Journal of Earth Science, 2018, 29(6): 1 304-1 318.
230 QUEAÑO K L, ALI J R, AITCHISON J C, et al. Geochemistry of Cretaceous to Eocene ophiolitic rocks of the Central Cordillera: implications on the Mesozoic-early Cenozoic evolution of northern Philippines[J]. International Geology Review, 2008, 50(4): 407-421.
231 LAGMAY A M F A, TEJADA M L G, PENA R E, et al. New definition of Philippine plate boundaries and implications to the Philippine Mobile Belt[J]. Journal of the Geological Society of the Philippines, 2009, 64(1): 17-30.
232 QUEANO K L, MARQUEZ E J, AITCHISON J C, et al. Radiolarian biostratigraphic data from the Casiguran ophiolite, northern Sierra Madre, Luzon, Philippines: stratigraphic and tectonic implications[J]. Journal of Asian Earth Sciences, 2013, 65: 131-142.
233 ARCILLA C A, RUELO H B, UMBAL J. The angat ophiolite, Luzon, Philippines: lithology, structure and problems in age interpretation[J]. Tectonophysics, 1989, 168(1/2/3): 127-135.
234 YUMUL G P Jr. Angat Ophiolitic Complex, Luzon, Philippines: a Cretaceous dismembered marginal basin ophiolitic complex[J]. Journal of Asian Earth Sciences, 1993, 8(1/2/3/4): 529-537.
235 ISHIDA K, SUZUKI S, DIMALANTA C B, et al. Recent progress in radiolarian research for ophiolites and the overlying turbidites, Philippine Mobile Belt, Northern Luzon Island[J]. Acta Geoscientica Sinica, 2012, 33: 29-31.
236 YUMUL G P Jr, DIMALANTA C B, SALAPARE R C, et al. Slab rollback and microcontinent subduction in the evolution of the Zambales Ophiolite Complex (Philippines): a review[J]. Geoscience Frontiers, 2020, 11: 23-36.
237 WOLFE J A. Philippine geochronology[J]. Journal of Geological Society Philippines, 1981, 50: 243-262.
238 DENG J H, YANG X Y, ZHANG Z F, et al. Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes[J]. Lithos, 2015, 230: 166-179.
239 RODRIGO J D, GABO-RATIO J A S, QUEAÑO K L, et al. Geochemistry of the Late Cretaceous Pandan Formation in Cebu island, Central Philippines: sediment contributions from the Australian plate margin during the Mesozoic[J]. The Depositional Record, 2020, 6(2): 309-330.
240 ZHANG B, GUO F, ZHANG X B, et al. Early Cretaceous subduction of Paleo-Pacific Ocean in the coastal region of SE China: petrological and geochemical constraints from the mafic intrusions[J]. Lithos, 2019, 334/335: 8-24.
241 FAUSTINO DV, YUMUL G P Jr, JESUS D E J V, et al. Geology of southeast Bohol, central Philippines: accretion and sedimentation in a marginal basin[J]. Australian Journal of Earth Sciences, 2003, 50 (4): 571-583.
242 MAAC Y O, YLADE E D. Stratigraphic and paleontologic studies of Tablas, Romblon[R]//Research on stratigraphic correlation of Cenozoic strata in oil and gas fields Philippines. Report of Research and Development Cooperation ITIT Project No. 8319, 1988: 44-67.
243 DIMALANTA C B, RAMOS E G L, YUMUL G P Jr, et al. New features from the romblon island group: key to understanding the arc-continent collision in central Philippines[J]. Tectonophysics, 2009, 479(1/2): 120-129.
244 MARQUEZ E J, AITCHISON J C, ZAMORAS L R. Upper Permian to Middle Jurassic radiolarian assemblages of Busuanga and surrounding islands, Palawan, Philippines[J]. Eclogae Geologicae Helvetiae, 2006, 99: S101-S125.
245 ZAMORAS L R, MONTES M G A, QUEAÑO K L, et al. The Buruanga Peninsula and the Antique range: two contrasting terranes in Northwest Panay, Philippines featuring an arc-continent collision zone[J]. Island Arc, 2008, 17(4): 443-457.
246 GABO J A S, DIMALANTA C B, ASIO M G S, et al. Geology and geochemistry of the clastic sequences from Northwestern Panay (Philippines): implications for provenance and geotectonic setting[J]. Tectonophysics, 2009, 479(1/2): 111-119.
247 ZHENG H, SUN X M, WANG P J, et al. Mesozoic tectonic evolution of the Proto-South China Sea: a perspective from radiolarian paleobiogeography[J]. Journal of Asian Earth Sciences, 2019, 179: 37-55.
248 CHIEN Y H, WANG K L, CHUNG S L, et al. Age and genesis of Sabah ophiolite complexes in NE Borneo[C]//Goldschmidt 2019 Abstract. Barcelona, Spain: Goldschmidt Conference, 2019.
249 FAURE M, NATAL'IN B. The geodynamic evolution of the eastern Eurasian margin in Mesozoic times[J]. Tectonophysics, 1992, 208(4): 397-411.
250 RANGIN C, SPAKMAN W, PUBELLIER M, et al. Geological and tomographic constraints on the subduction of the SE Asia marginal basins[J]. Bulletin de la Societe Geologique de France, 1999, 170: 775-788.
251 HALL R, SPAKMAN W. Mantle structure and tectonic history of SE Asia[J]. Tectonophysics, 2015, 658: 14-45.
252 WEI W, FAURE M, CHEN Y, et al. Back-thrusting response of continental collision: early Cretaceous NW-directed thrusting in the Changle-Nan'ao belt (Southeast China)[J]. Journal of Asian Earth Sciences, 2015, 100: 98-114.
253 FAN J K, ZHAO D P, DONG D D, et al. P-wave tomography of subduction zones around the central Philippines and its geodynamic implications[J]. Journal of Asian Earth Sciences, 2017, 146: 76-89.
254 PUBELLIER M, AURELIO M, SAUTTER B. The life of a marginal basin depicted in a structural map of the South China Sea[J]. Episodes, 2018, 41: 139-142.
255 QUEANO K L, ALI J R, MILSOM J, et al. North Luzon and the Philippine Sea plate motion model: insights following paleomagnetic, structural, and age-dating investigations[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5): B05101.
256 ALMASCO J N, RODOLFO K, FULLER M, et al. Paleomagnetism of Palawan, Philippines[J]. Journal of Asian Earth Sciences, 2000, 18(3): 369-389.
257 DIMALANTA C B, YUMUL G P. Magmatic and amagmatic contributions to crustal growth in the Philippine island arc system: comparison of the Cretaceous and post-Cretaceous periods[J]. Geosciences Journal, 2006, 10(3):321-329.
258 TONGKUL F. Polyphase deformation in the Telupid area, Sabah, Malaysia[J]. Journal of Asian Earth Sciences, 1997, 15(2/3): 175-183.
259 TAMAYO R A Jr, MAURY R C, YUMUL G P Jr, et al. Subduction-related magmatic imprint of most Philippine ophiolites: implications on the early geodynamic evolution of the Philippine archipelago[J]. Bulletin de la Société Géologique de France, 2004, 175(5): 443-460.
260 HOLLOWAY N H. The North Palawan block, Philippines-its relation to Asian mainland and role in evolution of South China Sea[J]. Bulletin of the Geological Society of Malaysia, 1981, 14: 19-58.
261 YUMUL G P Jr, DIMALANTA C B, TAMAYO Jr R A, et al. Collision, subduction and accretion events in the Philippines: new interpretations and implications[J]. Island Arc, 2003, 12: 77-91.
262 KNITTEL U, HUNG C H, YANG T F, et al. Permian arc magmatism in Mindoro, the Philippines: an early Indosinian event in the Palawan Continental Terrane[J]. Tectonophysics, 2010, 493(1/2): 113-117.
263 HALL R, SMYTH H. Cenozoic arc processes in Indonesia: identification of the key influences on the stratigraphic record in active volcanic arcs[J]. Special Paper of the Geological Society of America, 2008, 436: 27-54.
264 HALL R. Southeast Asia: new views of the geology of the Malay Archipelago[J]. Annual Review of Earth and Planetary Sciences, 2017, 45: 331-358.
[1] 冉伟民, 栾锡武, 魏新元, 鲁银涛, 刘鸿, 叶传红, 王嘉, 胡庆, 张丹丹. 加里曼丹岛南缘中中新世沉积特征及其主控因素探讨[J]. 地球科学进展, 2022, 37(3): 253-267.
[2] 魏新元, 栾锡武, 孟凡顺, 冉伟民, 鲁银涛, 刘泽璇, 王嘉, 胡庆, 张丹丹. 帝汶海槽构造与地震特征对深部板块的约束[J]. 地球科学进展, 2022, 37(3): 277-289.
[3] 何明勇, 栾锡武, 魏新元, 冉伟民, 穆敬轩, 叶传红, 刘洁, 陈建宏. 塔宁巴尔海槽断裂特征与构造演化[J]. 地球科学进展, 2022, 37(3): 290-302.
[4] 胡庆, 栾锡武, 冉伟民, 魏新元, 王嘉, 叶传红, 韦明盟, 龚梁轩, 刘泽璇. 北伊里安盆地北缘海底滑坡特征及成因研究[J]. 地球科学进展, 2022, 37(3): 303-315.
[5] 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7): 678-690.
[6] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[7] 孙湫词, 方银霞, 李家彪. 大陆架划界科学技术及其在海上丝路合作中的应用前景分析 *[J]. 地球科学进展, 2018, 33(12): 1215-1222.
[8] 戴璐. 末次冰期时暴露的巽他大陆架可能被热带稀树草原覆盖吗?[J]. 地球科学进展, 2017, 32(11): 1147-1156.
[9] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[10] 石学法,鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750.
[11] 高金耀,吴招才,王健,杨春国,张涛. 南海北部陆缘磁静区及与全球大洋磁静区对比的研究评述[J]. 地球科学进展, 2009, 24(6): 577-588.
[12] 吴自银;郑玉龙;初凤友;陶春辉;高金耀. 海底浅表层信息声探测技术研究现状及发展[J]. 地球科学进展, 2005, 20(11): 1210-1217.
[13] 李铁刚,曹奇原,李安春,秦蕴珊. 从源到汇:大陆边缘的沉积作用[J]. 地球科学进展, 2003, 18(5): 713-721.
阅读次数
全文


摘要