地球科学进展 ›› 2022, Vol. 37 ›› Issue (3): 253 -267. doi: 10.11867/j.issn.1001-8166.2021.080

“东南亚构造、沉积与资源环境效应”专辑 上一篇    下一篇

加里曼丹岛南缘中中新世沉积特征及其主控因素探讨
冉伟民 1 , 2( ), 栾锡武 3( ), 魏新元 4, 鲁银涛 5, 刘鸿 1 , 2, 叶传红 3, 王嘉 4, 胡庆 3, 张丹丹 2   
  1. 1.中国地质调查局青岛海洋地质研究所,山东 青岛 266237
    2.青岛海洋科学与技术试点国家实验室,海洋矿产资源评价与探测技术功能实验室,山东 青岛 266237
    3.山东科技大学 地球科学与工程学院,山东 青岛 266590
    4.中国海洋大学 海洋地球科学学院,山东 青岛 266100
    5.中国石油杭州地质研究院,浙江 杭州 310023
  • 收稿日期:2021-07-13 修回日期:2021-12-19 出版日期:2022-03-10
  • 通讯作者: 栾锡武 E-mail:ranweim@163.com;xluan@sdust.edu.cn
  • 基金资助:
    国家自然科学基金项目“东印度洋Roo海隆早期俯冲在巽他弧后东爪哇盆地的构造变形记录”(42006067);中国—东盟海上合作基金项目“中国—东盟海洋地震数据平台与研究中心建设”(12120100500017001)

Middle Miocene Sedimentary Characteristics and Main Controlling Factors in the Southern Margin of Kalimantan Island

Weimin RAN 1 , 2( ), Xiwu LUAN 3( ), Xinyuan WEI 4, Yintao LU 5, Hong LIU 1 , 2, Chuanhong YE 3, Jia WANG 4, Qing HU 3, Dandan ZHANG 2   

  1. 1.Qingdao Institute of Marine Geology,China Geological Survey,Qingdao 266237,China
    2.Laboratory for Marine Mineral Resources,Pilot National Laboratory for Marine Science and Technology (Qingdao),Qingdao 266237,China
    3.College of Earth Sciences and Engineering,Shandong University of Science and Technology,Qingdao 266590,China
    4.College of Marine Geosciences,Ocean University of China,Qingdao 266100,China
    5.PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023,China
  • Received:2021-07-13 Revised:2021-12-19 Online:2022-03-10 Published:2022-04-14
  • Contact: Xiwu LUAN E-mail:ranweim@163.com;xluan@sdust.edu.cn
  • About author:RAN Weimin (1990-), male, Taian City, Shandong Province, Assistant professor. Research areas include analysis and research of continental margin structures and basins. E-mail: ranweim@163.com
  • Supported by:
    the National Natural Science Foundation of China "Tectonic deformation records of the East Java back-arc basin behind the Sunda arc during the early subduction of the Roo Rise in the East Indian Ocean"(42006067);The China-ASEAN Maritime Cooperation Fund Project "China-ASEAN Marine Seismic Data Center"(12120100500017001)

加里曼丹岛地处东南亚区域中心位置,新生代以来其最显著的构造特征是伴随东南亚板块构造运动经历了逆时针旋转过程。重点针对中新世时期东南亚区域大规模构造事件,开展区域构造—沉积响应特征研究。基于加里曼丹岛东南部库泰盆地中新世三角洲沉积体系特征研究成果,结合加里曼丹岛南部东爪哇盆地中新世半深海斜坡—盆底沉积体系特征分析,综合探讨加里曼丹岛南缘中新世区域构造反转—沉积响应特征。中中新世时期15 Ma左右,形成了大规模马哈坎进积型三角洲沉积体系雏形;依据钻井与地震数据约束,推断东爪哇盆地中新世半深海斜坡—盆底沉积体系初始发育时间为16~15 Ma,2种沉积体系初始发育时间基本一致。推断东南亚区域中中新世时期大规模构造反转事件是加里曼丹岛南缘2种沉积体系发育的主要控制因素;而同时期库泰盆地开阔深水环境和东爪哇盆地东西向狭长延伸半深海环境,分别为库泰盆地大规模进积型三角洲沉积体系和东爪哇盆地半深海浊积体发育创造了充足的可容纳空间。

Kalimantan Island is located in central Southeast Asia. Since the Cenozoic, the most significant tectonic feature of Kalimantan Island has been that it experienced counter-clockwise rotation as a result of plate tectonic movement in Southeast Asia. This study focuses on the regional tectonic-sedimentary response characteristics of large-scale tectonic events in Southeast Asia during the Miocene. Based on a systematic review of the characteristics of the Miocene delta sedimentary system in the Kutei Basin (Southeast Kalimantan Island), and the analysis of the characteristics of the Miocene semi-deep bathyal slope and basin floor sedimentary system in the East Java Basin (South Kalimantan Island), this paper comprehensively discusses the characteristics and sedimentary response to the Miocene regional tectonic inversion in the southern margin of Kalimantan Island. Approximately 15 Ma during the Middle Miocene, a large-scale Mahakan progressive delta depositional system was formed. According to the drilling and seismic data constraints, the initial development time of the Miocene semi-deep bathyal slope and basin-floor sedimentary system in the East Java Basin is approximately 16-15 Ma. The initial development times of the two sedimentary systems were similar. The paper holds that the large-scale tectonic inversion events during the Middle Miocene in Southeast Asia are the main controlling factors for the development of the two sedimentary systems in the southern margin of Kalimantan Island. In the same period, the open deep-water environment of the Kutei Basin and the East-West narrow extended semi-deep bathyal environment of the East Java Basin created sufficient space for the development of a large-scale progradational delta sedimentary system in the Kutei Basin and semi-deep bathyal turbidite in the East Java Basin.

中图分类号: 

1 WANG Pinxian. The Sunda Shelf—a submerged Amazon Basin?[J]. Advances in Earth Science, 2017, 32(11): 1 119-1 125.
汪品先. 巽他陆架——淹没的亚马逊河盆地?[J].地球科学进展, 2017, 32(11): 1 119-1 125.
2 YANG Fuzhong, HONG Guoliang, ZHU Houqin, et al. The petroleum play characteristics of the Southeast Asia region and exploration potential[J]. Earth Science Frontiers, 2014, 21(3): 112-117.
杨福忠, 洪国良, 祝厚勤,等. 东南亚地区成藏组合特征及勘探潜力[J]. 地学前缘, 2014, 21(3): 112-117.
3 ZHANG Gongcheng, QU Hongjun, ZHAO Chong, et al. Giant discoveries of oil and gas exploration in global deepwaters in 40 years and the prospect of exploration[J]. Natural Gas Geoscience, 2017, 28(10): 1 447-1 477.
张功成, 屈红军, 赵冲,等.全球深水油气勘探40年大发现及未来勘探前景[J].天然气地球科学, 2017, 28(10): 1 447-1 477.
4 NUAY E S, ASTARITA A M, EDWARDS K. Early middle miocene deltaic progradation in the Southern Kutai Basin[C]//Proceedings of the Indonesian Petroleum Association 14th annual convention. Jakarta: Indonesian Petroleum Association, 1985: 63-81.
5 van de WEERD A A, ARMIN R A. Origin and evolution of the tertiary Hydrocarbon-Bearing Basins in Kalimantan (Borneo), Indonesia (1)[J]. AAPG Bulletin, 1992, 76(11):1 778-1 803.
6 MCCLAY K, DOOLEY T, FERGUSON A, et al. Tectonic Evolution of the Sanga Sanga Block, Mahakam Delta, Kalimantan, Indonesia [J]. AAPG Bulletin, 2000, 84(6): 765-786.
7 MOSS S J, CHAMBERS J L C. Tertiary facies architecture in the Kutei Basin, Kalimantan, Indonesia [J]. Journal of Asian Earth Sciences, 1999, 17(1/2):157-181.
8 HAN Bing, YAO Yongjian, LI Xuejie. Petroleum geologic feature and exploration potential of Kutai Basin[J]. Geological Research of South China Sea, 2010(1): 37-46.
韩冰,姚永坚,李学杰.库泰盆地石油地质特征与勘探潜力[J]. 南海地质研究, 2010(1): 37-46.
9 ZHANG Qiang, Fuliang LÜ, MAO Chaolin, et al. Petroleum geology and exploration prospect in Kutai Basin, Indonesia[J]. Marine Origin Petroleum Geology, 2012, 17(4): 8-15.
张强,吕福亮,毛超林,等.印度尼西亚库泰盆地油气地质特征及勘探方向[J].海相油气地质,2012,17(4):8-15.
10 LI Dong, HU Xiaolin, GUO Gang, et al. Sedimentology and hydrocarbon potential of the Kutei Basin, western Indonesia[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 127-132.
李冬,胡孝林,郭刚,等.印尼西部库泰盆地沉积演化与油气勘探潜力分析[J].海洋地质与第四纪地质, 2015, 35(6): 127-132.
11 LI Dong, HU Xiaolin, GUO Gang, et al. Differentiated accumulation of oil and gas in some oil-bearing basins in the eastern Kalimantan, Indonesia[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 129-135.
李冬,胡孝林,郭刚,等.印尼加里曼丹岛东部主要含油气盆地油气富集差异[J].海洋地质与第四纪地质, 2016, 36(4): 129-135.
12 LIU Fengming. Geological characteristics and hydrocarbon resource assessment of Kutei Basin[D]. Beijing: China University of Petroleum (Beijing), 2017.
刘凤鸣. 库泰盆地石油地质特征与油气资源评价[D]. 北京: 中国石油大学(北京), 2017.
13 LU Yintao, LUAN Xiwu, SHI Boqing, et al. Feature analysis of oil and gas samples from Well Naga Utara-1 in the Kutei Basin, Kalimantan Island[J]. Acta Geologica Sinica, 2017, 91(4): 928-941.
鲁银涛,栾锡武,史卜庆,等.加里曼丹岛库泰盆地Naga Utara-1井下中新统油、气样品特征分析[J].地质学报, 2017, 91(4): 928-941.
14 LU Yintao, LUAN Xiwu, SHI Boqing, et al. Characteristics of lower miocene marine petroleum play and prospective petroleum accumulation region in the Kutei Basin, the Kalimantan Island[J]. Marine Sciences, 2019, 43(1): 38-49.
鲁银涛,栾锡武,史卜庆,等.加里曼丹岛库泰盆地海相成藏组合特征及油气富集区分带性分析[J].海洋科学, 2019, 43(1): 38-49.
15 ARDHANA W. A depositional model for the Early Middle Miocene Ngrayong Formation and implications for exploration in the East Java Basin[C]//Proceedings of the Indonesian Petroleum Association 22nd Annual Convention. Jakarta: Indonesian Petroleum Association, 1993.
16 SHIELDS M L. The evolution of the east Java Basin, Indonesia[D]. Madison: University of Wisconsin, 2005.
17 COLE J M, CRITTENDEN S. Early Tertiary basin formation and the development of lacustrine and quasi-lacustrine/marine source rocks on the Sunda Shelf of SE Asia[J]. Geological Society of London Special Publications, 1997, 126 (1):147-183.
18 KUSUMASTUTI A, RENSBERGEN P VAN, WARREN J K. Seismic sequence analysis and reservoir potential of drowned Miocene carbonate platforms in the Madura Strait, East Java, Indonesia[J]. AAPG Bulletin, 2002, 86(2): 213-232.
19 LUNT P, SCHILLER D, KALAN T. East Java geological field trip-post-convention field trip[Z]. Indonesian Petroleum Association, 1996.
20 SHARAF E F, SIMO J A, CARROLL A R, et al. Stratigraphic evolution of Oligocene-Miocene carbonates and siliciclastics, East Java Basin, Indonesia[J]. AAPG Bulletin, 2005, 89(6): 799-819.
21 HALL R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431.
22 HALL R. Southeast Asia: new views of the geology of the Malay Archipelago[J]. Annual Review of Earth Planetary Sciences, 2017, 45: 331-358.
23 HALL R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 2012, 570/571: 1-41. DOI:10.1016/j.tecto.2012.04.021 .
24 HUTCHISON C S. Geological evolution of South-east Asia[M]. Oxford: Clarendon Press, 1989.
25 HUTCHISON C S. The 'Rajang accretionary prism' and 'Lupar Line' problem of Borneo[J]. Geological Society, London, Special Publications, 1996, 106(1): 247-261.
26 HUTCHISON C S. Oroclines and paleomagnetism in Borneo and south-east Asia[J]. Tectonophysics, 2010, 496(1/2/3/4): 53-67.
27 HALL R. Reconstructing Cenozoic SE Asia[J]. Geological Society, London, Special Publications, 1996, 106(1): 153-184.
28 HALL R, WILSON M E J. Neogene sutures in eastern Indonesia[J]. Journal of Asian Earth Sciences, 2000, 18(6): 781-808.
29 HALL R, HATTUM M W A VAN, SPAKMAN W. Impact of India-Asia collision on SE Asia: the record in Borneo[J]. Tectonophysics, 2008, 451(1/2/3/4): 366-389.
30 HAMILTON W G. Tectonics of the Indonesian region[J]. Professional Paper United States Geological Survey, 1979, 1 078: 1-345.
31 METCALFE I. Allochthonous terrane processes in Southeast Asia[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1990, 331(1 620):625-640.
32 METCALFE I. Pre-Cretaceous evolution of SE Asian terranes[M]// Hall R, Blundell D. Tectonic evolution of Southeast Asia. Geological Society Special Publications, 1996,106: 97-122.
33 METCALFE I. Palaeozoic-Mesozoic history of SE Asia[J]. Geological Society, London, Special Publications, 2011, 355(1):7-35.
34 BERGMAN S C, COFFIELD D Q, TALBOT J P, et al. Tertiary tectonic and magmatic evolution of western Sulawesi and the Makassar Strait, Indonesia: evidence for a Miocene continent-continent collision[J]. Geological Society, London, Special Publications, 1996, 106(1): 391-429.
35 SMYTH H R, HAMILTON P J, HALL R, et al. The deep crust beneath island arcs: inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 269-282.
36 SMYTH H R, HALL R, NICHOLS G J. Cenozoic volcanic arc history of East Java, Indonesia: the stratigraphic record of eruptions on an active continental margin[M]// Special paper,436: formation and applications of the sedimentary record in Arc Collsion Zones. Geological Society of America, 2008: 199-222.
37 SMYTH H R, HALL R, NICHOLS G J. Significant volcanic contribution to some quartz-rich sandstones, East Java, Indonesia[J]. Journal of Sedimentary Research, 2008, 78(5): 335-356.
38 YAN Jiaxin. Tectonic implications of marine Mesozoic deposits from Kalimantan and Malay peninsula[J]. Journal of Tropical Oceanography, 2005(2): 26-32.
颜佳新. 加里曼丹岛和马来半岛中生代岩相古地理特征及其构造意义[J].热带海洋学报, 2005(2): 26-32.
39 ZHANG Jianguo, HUANGFu Gang, LONG Fei. Geodynamic significance of tectonic evolution & medium property of sundaland[J]. Journal of Seismological Research, 2014, 37(3): 323-331.
张建国, 皇甫岗, 龙飞. 巽他地块的构造演化与介质特性的动力学意义[J].地震研究, 2014, 37(3): 323-331.
40 SEARLE M P, WHITEHOUSE M J, ROBB L J, et al. Tectonic evolution of the Sibumasu-Indochina terrane collision zone in Thailand and Malaysia: constraints from new U-Pb zircon chronology of SE Asian tin granitoids[J]. Journal of the Geological Society, 2012, 169(4): 489-500.
41 PARKINSON C D, MIYAZAKI K, WAKITA K, et al. An overview and tectonic synthesis of the pre-Tertiary very-high-pressure metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia[J]. Island Arc, 1998, 7(1/2): 184-200.
42 LEEUWEN T VAN, ALLEN C M, KADARUSMAN A, et al. Petrologic, isotopic, and radiometric age constraints on the origin and tectonic history of the Malino Metamorphic Complex, NW Sulawesi, Indonesia[J]. Journal of Asian Earth Sciences, 2007, 29(5/6): 751-777.
43 EMMET P A, GRANATH J W, DINKELMAN M G. Pre-Tertiary sedimentary "keels" provide insights into Tectonic assembly of basement terranes and present-day petroleum systems of the East Java Sea[C]// Proceedings of the Indonesian Petroleum Association 33rd annual convention. Jakarta: Indonesian Petroleum Association, 2009.
44 GRANATH J W, CHRIST J M, EMMET P A, et al. Pre-Cenozoic sedimentary section and structure as reflected in the Java-SPANTM crustal-scale PSDM seismic survey, and its implications regarding the basement terranes in the East Java Sea[J]. Geological Society, London, Special Publications, 2011, 355(1): 53-74.
45 FULLER M, ALI J R, MOSS S J, et al. Paleomagnetism of Borneo[J]. Journal of Asian Earth Sciences, 1999, 17(1/2), 3-24.
46 RAN Weimin, LUAN Xiwu, LU Yintao, et al. Formation and evolution of the tertiary carbonate reefs in the Madura Strait Basin of Indonesia [J]. Journal of Oceanology and Limnology, 2019, 37: 47-61.
47 RAN Weimin, LUAN Xiwu, LU Yintao, et al. Seismic characteristics and strontium isotope ages of the Middle Miocene Ngrayong Formation in the Madura Strait Basin: implications for the paleogeographic reconstruction of East Java[J]. Journal of Asian Earth Sciences, 2020, 190: 104109. DOI:10.1016/j.jseaes.2019.104109 .
48 MATTHEWS S J, BRANSDEN P J E. Late Cretaceous and Cenozoic tectono-stratigraphic development of the east Java Sea basin, Indonesia[J]. Marine and Petroleum Geology, 1995, 12(5): 499-510.
49 FERGUSON A, MCCLAY K. Structural modeling within the Sanga Sanga PSC, Kutei Basin, Kalimantan: its application to paleochannel orientation studies and timing of hydrocarbon entrapment[C]// Proceedings of the IPA Petroleum Systems of SE Asia and Australasia Conference. Indonesian Petroleum Association, 1997: 709-726.
50 LAND D H, JONES C M. Coal geology and exploration of part of the Tertiary Kutei Basin in East Kalimantan, Indonesia[J]. Geological Society, London, Special Publications, 1987, 32(1): 235-255.
51 SHARAF E F, BOUDAGHERFADEL M, SIMO J, et al. A revision of the biostratigraphy and strontium isotope dating of oligocene-miocene outcrops in East Java, Indonesia[J]. Berita Sedimentologi, 2014, 30: 44-81.
52 HTWE P, SASAKI K, SURJONO S S, et al. The assessments of Lithofacies and depositional environments of the Ngrayong Formation in the Madura Island, North-East Java Basin, Indonesia: implication for reservoir characteristics[C]// 20th Formation Evaluation Symposium of Japan. Society of Petrophysicists and Well-Log Analysts, 2014: 1-7.
53 SUN Weidong, LIN Chiouting, ZHANG Lipeng, et al. The formation of the South China Sea resulted from the closure of the Neo-Tethys: a perspective from regional geology[J]. Acta Petrologica Sinica, 2018, 34(12): 3 467-3 478.
孙卫东,林秋婷,张丽鹏,等.跳出南海看南海—新特提斯洋闭合与南海的形成演化[J].岩石学报, 2018, 34(12): 3 467-3 478.
[1] 杨玮琳, 韩业松, 刘擎, 刘耕年. 基于宇宙成因核素剖面法测年的川西龙日坝冰水扇研究[J]. 地球科学进展, 2021, 36(12): 1291-1300.
[2] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[3] 王小垚, 曾联波, 魏荷花, 孙建芳, 史今雄, 徐翔, 曹东升, 陆诗磊. 碳酸盐岩储层缝洞储集体研究进展[J]. 地球科学进展, 2018, 33(8): 818-832.
[4] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[5] 董桂玉,陈洪德,何幼斌,秦志勇,罗进雄,辛长静. 陆源碎屑与碳酸盐混合沉积研究中的几点思考[J]. 地球科学进展, 2007, 22(9): 931-939.
[6] 丁振举,刘丛强,姚书振,周宗桂. 海底热液系统高温流体的稀土元素组成及其控制因素[J]. 地球科学进展, 2000, 15(3): 307-312.
[7] 江茂生,沙庆安. 碳酸盐与陆源碎屑混合沉积体系研究进展[J]. 地球科学进展, 1995, 10(6): 551-554.
阅读次数
全文


摘要