地球科学进展 ›› 2003, Vol. 18 ›› Issue (5): 713 -721. doi: 10.11867/j.issn.1001-8166.2003.05.0713

研究论文 上一篇    下一篇

从源到汇:大陆边缘的沉积作用
李铁刚,曹奇原,李安春,秦蕴珊   
  1. 中国科学院海洋研究所,山东 青岛 266071
  • 收稿日期:2003-06-23 修回日期:2003-07-27 出版日期:2003-12-20
  • 通讯作者: 李铁刚 E-mail:qyscsxli@ms.qdio.ac.cn
  • 基金资助:

    国家重点基础研究发展规划项目“中国边缘海的形成演化及重要资源的关键问题”(编号:G20000467);中国科学院院知识创新工程重大项目“晚第四纪中国海洋与陆地相互作用中的海洋古环境特征”(编号:KZCX3-SW-220)资助.

SOURCE TO SINK: SEDIMENTATION IN THE CONTINENTAL MARGINS

Li Tiegang, Cao Qiyuan, Li Anchun, Qin Yunshan   

  1. Insititute of Oceanology, CAS, Qingdao 266071, China
  • Received:2003-06-23 Revised:2003-07-27 Online:2003-12-20 Published:2003-10-01

大陆边缘作为地球上沉积物堆积的主要区域,其沉积层保存着全球海平面变化、气候变化、岩石圈变形、大洋环流、地球化学循环、有机生产力和沉积物补给等重要信息。然而,尽管对大陆边缘沉积系统进行了几十年的研究,但仍有许多问题没有得到充分的解决,尤其是没能实现对大陆边缘沉积物扩散系统和相关地层的定量解释。为此,近年来国际地学界开始构思源到汇---大陆边缘沉积作用的系统过程研究,以提高对大陆边缘物质扩散系统行为的预测能力。介绍了源到汇---大陆边缘的沉积作用的研究对象、内容和拟解决的主要科学问题以及DSDP和ODP在大陆边缘沉积作用研究中的主要贡献和目前的进展情况。

Continental margins are the principal locus of sediment accumulation on the Earth. The resulting strata have documented important information on global sea-level change, climate change, lithosphere deformation, ocean currents, geochemical cycles, organic productivity and sediment replenishment. However, although the continental margins sediment dispersal systems have been studied for several decades, still are there many problems remained to be less well understood, especially, quantitative explanation to the dispersal systems and the strata formed from them has not been achieved. So a initiative to study the source-to-sink: margin sedimentation systems and relating geological processes is being conceived by geological sciences communities around the world, to better predict the behavior of the margin sediment dispersal systems. The research objects, contents and major intended scientific problems around source-to-sink margin sedimentation were outlined is this paper, major contributions of DSDP and ODP and recent development in this domain have also been introduced.

中图分类号: 

[1] Driscoll N, Nittrouer C. Source to Sink Studies[R]. Margins Newsletter, 2002,5: 1-24.

[2] Weser O E. Sedimentological aspects of strata encountered on Leg 23 in northern Arabian Sea[A]. In: Whitmarsh R B, Weser O E, et al, eds. Initial Reports Deep Sea Drilling ProJect[C]. 1974, 23: 503-523.

[3] Cochran J R. Himalayan uplift, sea level, and the record of Bengal Fan sedimentation at the ODP Leg 116 sites[A]. In: Cochran J R, Stow D A V, et al,eds. Scientific Results Ocean Drilling Program[C]. 1990, 116: 397-414.

[4] France-Lanord C, Derry L, Michard A. Evolution of the Himalaya since Miocene time: Isotopic and sedimentological evidence from the Bengal Fan[A]. In: Treloar P J, Searle M P, eds. Himalayan Tectonics[C]. Geological Society of London Special Publication, 1993, 74: 603-622.

[5] Clift P D, Shimizu N, Layne G, et al. Development of the Indus Fan and its significance for the erosional history of the western Himalaya and Karakoram[J]. Geological Society of America Bulletin, 2001, 113:1 039-1 051.

[6] Hiscott R N, Pirmez C, Flood R D. Amazon submarine fan drilling: A big step forward for deep-sea fan models[J]. Geosciences Canada, 1997, 24: 13-24.

[7] Hiscott R N, Colella A, Pezard P, et al. Sedimentology of deep-water volcaniclastics, Oligocene Izu-Bonin forearc basin, based on formation microscanner images[A]. In: Taylor B, et al,eds. Scientific Results Ocean Drilling Program[C]. 1992, 126: 75-96.

[8] Piper D J W, Normark W R. Sandy fans-from Hueneme to Amazon and beyond[J]. American Association of Petroleum Geologists Bulletin, 2001, 85: 1 407-1 438.

[9] Stow D A V, Wetzel A. Hemiturbidite: A new type of deep-water sediment[A]. In: Cochran J R, et al,eds. Scientific Results Ocean Drilling Program[C]. 1990, 116: 25-34.

[10] Hambrey M J, Ehrmann W U, Larsen B. Cenozoic glacial record of the Prydz Bay continental shelf, East Antarctica[A]. In: Barron J, et al,eds. Scientific Results Ocean Drilling Program[C]. 1991, 119: 77-132.

[11] Zuffa G G, Normark W R, Serra F, et al. Turbidite megabeds in an oceanic rift valley recording Jokulhlaups of late Pleistocene glacial lakes of the western United States[J]. Journal of Geology, 2000, 108: 253-274.

[12] Migeon S, Savoye B, Zanella E, et al. Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): Significance for sediment transport and deposition and for the mechanisms of sediment-wave construction[J]. Marine Petroleum Geology, 2001, 18: 179-208.

[13] Jervey M T. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression[A]. In: Wilgus C K, Hastings B S, Kendall C G St C, et al, eds. Sea-level Changes: An integrated Approach[C]. Society of Economic Paleontology and Mineralogy Special Publication, 1988, 42: 47-69.

[14] Posamentier H W, Jervey M T, Vail P R. Eustatic controls on clastic deposition I-conceptual framework[A]. In: Wilgus C K, et al,eds. Sea Level Changes: An Integrated Approach[C]. Society of Economic Paleontology and Mineralogy Special Publication, 1988, 42: 109-124.

[15] Lawrence D T. Evaluation of eustasy, subsidence, and sediment input as controls on depositional sequence geometries and the synchroneity of sequence boundaries[A]. In: Weimer P, Posamentier H W, eds. Siliciclastic Sequence Stratigraphy, Recent Developments and Applications[C]. American Association of Petroleum Geology Memoir, 1993, 58: 227-367.

[16] Mulder T, Syvitski J P M. Turbidity currents caused at mouths of rivers during exceptional discharges to the world oceans[J]. Journal of Geology, 1995, 103: 285-299.

[17] Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers[J]. Journal of Geology, 1992, 100: 525-544.

[18] Westcott W A. Geomorphic thresholds and complex response of fluvial systems-some implications for sequence stratigraphy[J]. American Association of Petroleum Geology Bulletin, 1993, 77: 1 208-1 218.

[19] Bhattacharya J P, Walker R G. Deltas[A]. In: Walker R G, James N P, eds. Facies Models: Response to Sea-level Change[C]. Geological Association of Canada, 1992. 157-177.

[20] James N P, Kendall A C. Introduction to carbonate and evaporite facies models[A]. In: Walker R G, James N P, eds. Facies Models: Response to Sea Level Change[C]. Geological Association of Canada, 1992. 265-275.

[21] Blum M D, Törnqvist T E. Fluvial response to climate and sea-level change: A review and look forward[J]. Sedimentology, 2000, 47: 2-48.

[1] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[2] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[3] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[4] 胡正莹,王汝建,李文宝. 南塔斯曼海隆2 Ma以来碳酸钙沉积记录及其对环流系统和轨道周期的响应[J]. 地球科学进展, 2013, 28(2): 269-281.
[5] 赵强,修宗祥. 台湾河海输运系统宿命整合研究综述[J]. 地球科学进展, 2013, 28(1): 31-38.
[6] 夏戳原,黄慈流. 深海钻探与南海[J]. 地球科学进展, 1995, 10(3): 246-250.
[7] 刘先文,单巨仁. 郯庐断裂系研究的新进展——兼论东亚北东向走滑断裂系统[J]. 地球科学进展, 1995, 10(2): 176-182.
[8] 程绍平,杨桂枝. 大地貌学研究进展综述[J]. 地球科学进展, 1994, 9(1): 1-7.
阅读次数
全文


摘要