地球科学进展 ›› 2003, Vol. 18 ›› Issue (5): 812 -816. doi: 10.11867/j.issn.1001-8166.2003.05.0812

研究论文 上一篇    

上层海洋—低层大气科学研究计划
闫菊 1,李昕 2,王辉 3   
  1. 1.中国海洋大学,山东 青岛 266003;2.中国科学院大气物理研究所,北京 100029;3.国家自然科学基金委员会地球科学部,北京 100085
  • 收稿日期:2003-04-07 修回日期:2003-08-12 出版日期:2003-12-20
  • 通讯作者: 闫菊 E-mail:yanju@mail.ouc.edu.cn

SURFACE OCEAN-LOW ATMOSPHERE STUDY

Yan Ju 1, Li Xin 2, Wang Hui 3   

  1. 1. Ocean University of China,Qingdao 266003,China;2. Institute of Atmospheric Physics,CAS,Beijing 100029,China;3. Department of Earth Sciences,National Science Foundation of China,Beijing 100085,China
  • Received:2003-04-07 Revised:2003-08-12 Online:2003-12-20 Published:2003-10-01

海洋和大气是地球系统的重要组成部分,其在全球气候变化中具有重要作用。上层海洋与低层大气研究(SOLAS)作为IGBPII第一个新的核心计划,以海洋中深度在100 m以上的水层和 1 000 m以下的大气边界层为主要研究对象,通过多学科的交叉研究,以揭示海洋与大气相互作用的物理和生物地球化学过程耦合及其在气候变化中的作用。SOLAS科学计划得到了世界各国的积极响应,已有16个国家向国际SOLAS科学委员会提交了SOLAS进展状况的国家报告。我国也制定了自己的科学研究计划重点研究中国近海的大气物质入海、海洋温室气体排放、海-气界面上的物质和能量交换过程及其对气候和环境的影响和反馈。

Ocean and atmosphere are the most important parts of earth system, which have exerted great effects on global climate change. As the first new project in IGBP II, Surface Ocean-Low Atmosphere Study (SOLAS) will focus on research topics of linked ocean-atmosphere interactions at the ocean-atmosphere interface, including the atmospheric boundary layer (typically to about 1 km) and the upper-ocean boundary layer (typically 100m). SOLAS can contribute to our understanding of the interaction processes and mechanisms between ocean and atmosphere by interdisciplinarity studies. SOLAS science is underway in many countries. Reports on the status of SOLAS activity in 16 countries are received. China has drawn the draft national science plan, which mainly focus on scientific questions in Chinese coastal areas about the input of atmospheric species to the sea, the emissions of green house gases from the sea, exchange processes at the air-sea interface in order to understand and quantify the role that ocean-atmosphere interactions play in the regulation of climate and environmental changes.

中图分类号: 

[1] Bange H W, Rapsomanikis s, Andreae M O. Nitrous oxide in coastal waters[J]. Global Biogeochemical Cycles, 1996,10: 197-207. 

[2] Bates T S, Kelly K C, Johnson J E, et al. A revaluation of the open ocean source of methane to the atmosphere[J]. Journal Geophysical Research, 1996,101: 6 953-6 961. 

[3] Bock E J, Hara T, Frew N M, et al. Relationship between air-sea gas transfer and short wind waves[J]. Journal Geophysical Research, 1999,104: 25 821-25 831. 

[4] Coale K H, Johnson K S, Fitzwater S E, et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean[J]. Nature, 1996,383: 495-501. 

[5] De Angelis M A, Lee C. Methane production during zooplankton grazing on marine phytoplankton[J]. Limnology Oceanography, 1994,39: 1 298-1 308. 

[6] Dore J E, Karl D M. Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at station ALOHA[J]. Limnology Oceanography, 1996, 41: 1 619-1 628. 

[7] Duce R A, Liss P S, Merrill J T, et al. The atmospheric input of trace species to the world ocean[J]. Global Biogeochemical Cycles, 1991,5: 193-259. 

[8] Falkowski P G. Evolution of the nitrogen cycle and its influence on the biological CO2 pump in the ocean[J]. Nature, 1997,387: 272-275. 

[9] Gabric A J, Whetton P H, Boers R, et al. The impact of simulated climate change on the air-sea flux of dimethylsulphide in the subantarctic Southern Ocean[J]. Tellus,1998,50B: 388.

[10] Johnson K S, Gordon R M, CoaleK H. What controls dissolved iron in the world ocean?[J]. Marine Chemistry, 1997,57: 137-161. 

[11] Nevison C D, Weiss R F, Erickson D J III. Global oceanic emissions of nitrous oxide[J]. Journal Geophysical Research, 1995,100: 15 809-15 820. 

[12] Nightingale P D, Liss P S, Schlosser P. Measurements of air-sea gas transfer during an open ocean algal bloom[J]. Geophysical Research Letters, 2000,27: 2 117-2 120. 

[13] Liss P. SOLAS-Surface Ocean-Lower Atmosphere Study[J]. Global Change Newsletter, IGBP, 2002,50:15-18.

[14] Watson A J. Surface Ocean-Lower Atmosphere Study (SOLAS)[J]. Global Change Newsletter, IGBP, 1997,31: 9-12.

[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[3] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[4] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[5] 刘雷钧, 何建刚, 涂海波, 郎骏健, 柳林涛. 载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响[J]. 地球科学进展, 2021, 36(5): 520-527.
[6] 吴园涛, 段晓男, 沈刚, 殷建平, 张偲. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413-420.
[7] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[8] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[9] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[10] 冷疏影,汪建君,张亮,连展,王清. 2020年度海洋科学与极地科学基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1189-1200.
[11] 何建军,郭郁葱,刘哲,吴捷,李莉. 2020年度大气科学领域项目评审与资助成果简析[J]. 地球科学进展, 2020, 35(11): 1201-1210.
[12] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[13] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[14] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[15] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
阅读次数
全文


摘要