地球科学进展 ›› 2002, Vol. 17 ›› Issue (3): 355 -362. doi: 10.11867/j.issn.1001-8166.2002.03.0355

综述与评述 上一篇    下一篇

10 Be在大洋边缘海洋学中的应用及模型
  1. 青岛大学环境科学系,山东 青岛 266071
  • 收稿日期:2001-05-08 修回日期:2001-08-13 出版日期:2002-12-20
  • 通讯作者: 杨永亮(1955-),男,河南清丰人,教授,主要从事海洋同位素地球化学研究.E-mail: qdenv@qdu.edu.cn E-mail:qdenv@qdu.edu.cn
  • 基金资助:



YANG Yong-liang   

  1. Department of Environmental Sciences, Qingdao University, Qingdao  266071, China
  • Received:2001-05-08 Revised:2001-08-13 Online:2002-12-20 Published:2002-06-01

主要讨论宇宙射线成因核素10Be(T 1/2= 1.5Ma)在大洋边缘海洋学尤其是中国近海海洋研究中的应用。在过去的近20年中,在中国开展的10Be研究在黄土堆积年龄及地层对比方面获得了诸多成果,但在海洋方面的应用研究距国际水平仍有一定的差距,尚需进一步加强。综述了海洋环境中10Be作为一个地球化学示踪剂的研究现状,着重介绍10Be在中国东部海域的收支平衡模式以及讨论10Be在太平洋西部边缘海及岛弧地区的应用前景。

The potential application of the cosmogenic nuclide 10Be in marginal seas and island-arc system study has been discussed. Dissolved beryllium-10 concentration profiles in seawaters of the East China sea and the Kuroshio have been investigated. The results show that 10Beconcentrations in this area are mainly controlled by surface biological productivity, partical remineralization, and the degree of mixing with Changjiang River (the Yangtze river) and  Kuroshio waters. Generally the10Be water depth profiles can be divided into three layers: the surface mixing layer, the particulate 10Be regeneration layer and the bottom layer. Surface water10Be concentrations increase gradually towards the Okinawa Trough and increase sharply at the edge of the Kuroshio Current. Vertical distributions of 10Be show that 10Be is enriched in the bottom waters near the Yangtze river estuary and the central continental shelf. Box model results indicate that 10Be input from the Kuroshio current is more important than Yangtze river input and atmospheric precipitation. About 81% of the10Be input to the East China sea is scavenged into the sediments and 19% of the 10Be flows out of the East China sea by currents and water exchange. The10Be sedimentation flux in the East China sea is nearly five times of the average global 10Be production rate. Therefore the East China sea may be an important sink for  10Be.


[1] Bourles D, Raisbeck G M, Yiou F. 10Be and 9Be in marine sediments and their potential for dating[J]. Geochimica et Cosmochimica Acta, 1989, 53: 443-452.
[2] Somayajulu B L K,Sharma P,Klein J,  et al. Changes in the depositional flux of 10Be in the Orca basin, Gulf of Mexico:Inverse relation with 18O[J]. Chemical Geology,1991,86:253-258.
[3] Eisenhauer A, Spielhagen R F,Frank M, et al. 10Be records of sediment cores from high northern latitudes: Implications for environmental and climatic changes[J]. Earth and Planetary Science Letters, 1994, 124: 171-184.
[4] Castagnoli G C,Albrecht A,Beer J,  et al.  Evidence for enhanced 10Be deposition in Mediterranean sediments 35 ka BP[J]. Geophysical Research Letters,1995,22(6):707-710.
[5] Rutsch H-J,Mangini A,Bonani G, et al. 10Be and Ba concentrations in West African sediments trace productivity in the past[J]. Earth and Planetary Science Letters, 1995, 133: 129-143.
[6] Wang L, Ku T L, Luo S, et al. 10Be-26Al systematics in deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 1996, 60: 109-119.
[7] Shen Chengde. Studies on 10Be record of deep-sea sediments[J]. Quaternary Geology, 1997, 2: 169-176.[沈承德.深海沉积物10Be记录研究[J]. 第四纪地质,1997, 2: 169-176. ]
[8] Ku T L, Kusakabe M, Nelson D E, et al. Constancy of oceanic deposition of 10Be as recorded in manganese crusts[J]. Nature, 1982, 299: 240- 242.
[9] Jiang Songsheng, Jiang Shan, Ma Tiejun, et al. Studies on determination of growth rate of Mn nodules and sedimentation rate of deep-sea sediments[J].  Chinese Science Bulletin , 1992.37: 592-594.[蒋松生,姜山,马铁军, 等. 10Be断代法测定锰结核生长速率和深海沉积物沉积速率的研究[J]. 科学通报,1992,37: 592-594.]
[10] RaisbeckG M, Yiou F, Fruneau F, et al. 10Be concentration and residence time in the ocean surface layer[J]. Earth and Planetary Science Letters, 1979, 43: 237- 240. 
[11] RaisbeckG M, Yiou F, Fruneau F, et al. 10Be concentration and residence time in the deep ocean[J]. Earth and Planetary Science Letters, 1980, 51: 275- 278. 
[12] Kusakabe M, Ku T L, Vogel J S, et al. 10Be profiles in sea water[J]. Nature, 1982, 299: 712- 714.
[13] Segl M,Mangini A,Beer J, et al. 10Be in the Atlantic Ocean,a transect at 25°N[J]. Nuclear Instruments and Methods in Physical Research,1987,B29: 332-334.
[14] Kusakabe M, Ku T L, Southon J R, et al. Distribution of 10Be and 9Be in the ocean[J]. Earth and Planetary Science Letters, 1987, 82: 231-240.
[15] Kusakabe M, Ku T L, Southon J R, et al. Beryllium isotopes in the Ocean[J]. Geochemical Journal, 1990, 24: 263-272.
[16] Ku T L, Kusakabe M, Measures C I, et al. Beryllium isotope distribution in the western North Atlantic: a comparison to the Pacific[J]. Deep-Sea Research, 1990, 37: 795-808. 
[17] Kusakabe M, Ku T L, Southon J R, et al. Be isotopes in rivers/estuaries and their oceanic budgets[J]. Earth and Planetary Science Letters, 1991, 102: 265-276.
[18] von Blanckenburg F,O'Nions R K, N S Belshaw, et al. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts[J]. Earth and Planetary Science Letters,1996,141: 213-226. 
[19] Southon J R,Ku T L,Nelson D E, et al. 10Be  in a deep-sea core:Implications regarding 10Be production changes over the past 420 ka[J]. Earth and Planetary Science Letters,1987,85:356-364.
[20] Henken-Mellies W U, Beer J, Heller F, et al.10Be and 9Be in South Atlantic DSDP Site 519:Relation to geomagnetic reversals and to sediment composition[J]. Earth and Planetary Science Letters, 1990, 98: 267-276.
[21] Raisbeck G M, Yiou F, Bourles D, et al. Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period[J]. Nature, 1987, 326: 273-277.
[22] Yiou F,Raisbeck G M,Bourles D, et al. 10Be in ice at Vostok Antarctica during the last climatic cycle[J]. Nature, 1985, 316: 616-617.
[23] Tera F, Brown L, Morris J,et al. Sediment incorporated in island-arc magmas: Inferences from 10Be[J]. Geochimica et Cosmochimica Acta, 1986, 50: 535-550.
[24] Ryan J G, Langmuir C H. Beryllium systematics in young volcanic rocks: Implication for 10Be[J]. Geochimica et Cosmochimica Acta, 1988, 52: 237-244.
[25] Monaghan MC, Klein J, Measures C I. The origin of 10Be  in island-arc volcanic rocks[J]. Earth and Planetary Science Letters, 1988, 89: 288-298. 
[26] Morris J, Tera F. 10Be and 9Be in mineral separates and whole rocks from volcanic arcs: Implications for sediment subduction[J]. Geochimica et Cosmochimica Acta, 1989, 53: 3 197-3 206.
[27] Sigmarsson O, Condomines M, Morris J D, et al. Uranium and 10Be enrichments by fluids in Andean arc magmas[J]. Nature, 1990, 346: 163-165.
[28] Shen Chengde, Liu Dongsheng, Beer J, et al. 10Be and evolution of accumulation of loess[J]. Science in China(B), 1989, 7: 744- 751.[沈承德, 刘东生, Beer J, 等. 10Be与黄土的堆积演化[J].  中国科学(B), 1989, 7: 744-751.] 
[29] Shen Chengde, Liu Dongsheng, Beer J, et al. 10Be record in the late pleistocene loess deposits[J]. Quaternary Sciences, 1989, 3: 203- 213. [沈承德, 刘东生, Beer J, 等. 晚更新世黄土堆积物中的10Be记录[J]. 第四纪研究, 1989, 3: 203-213.]
[30] Shen Chengde, Yi Weixi, Liu Dongsheng, et al. 10Be-susceptibility model and the quantitative estimates of pedogenic ferromagnetic material flux in Chinese loess[J]. Quaternary Sciences,1994, 1: 75- 86. [沈承德, 易惟熙, 刘东生, 等. 10Be磁化率模型及黄土中成壤磁性物质通量估算[J].第四纪研究, 1994, 1: 75-86.]
[31] Shen Chengde, Yi Weixi,  Liu Dongsheng, et al. 10Be records in loess with high resolution and the dating of loess strata[J].Quaternary Sciences 1994, 3: 203- 213.  [沈承德, 易惟熙, 刘东生. 高分辨10Be记录与黄土地层定年[J]. 第四纪研究, 1994, 3: 203-213. ]
[32] Gu Zhaoyan, Lal D, Guo Zhengtang, et al. Geochemistry of cosmogenic 10Be in loess-paleosol sequences and red clay in the loess plateau[J]. Quaternary Sciences, 2000, 20(5): 409- 422. [顾兆炎, Lal D, 郭正堂, 等. 黄土高原黄土和红粘土10Be地球化学特征[J]. 第四纪研究, 2000, 20(5): 409-422.]
[33]Gu Zhaoyan, Liu Dongsheng, Lal D. Application of the in situ cosmogenic nuclides 10Be and 26Al for studies of formation and evolutionary histories of the Earth surface[J]. Quaternary Sciences, 1997, 3: 211-221.[顾兆炎, 刘东生, Lal D.10Be和26Al在地表形成和演化研究中的应用[J]. 第四纪研究, 1997, 3: 211-221.]
[34] Wang Jian, Xu Xiaobin. Techique for surface dating-cosmogenic isotopes dating[J]. Advance in Earth Sciences, 2000, 15(2): 237- 240.[王建, 徐孝彬. 地面测年技术——宇生同位素测年[J].  地球科学进展, 2000, 15(2): 237-240.]
[35] Yang Yong-Liang, Kusakabe M, Southon J R. 10Be behavior in the East China sea and the influence from the Kuroshio current[J]. Geochimica, 2001, 30(4): 305-314.[杨永亮, Kusakabe M, Southon J R. 东海与黑潮海水中宇宙射线成因核素10Be的研究[J]. 地球化学, 2001, 30(4):305-314.]
[36] Monaghan M C, Krishnaswami S, Turekian K K, et al. The global-average production rate of 10Be[J].  Earth and Planetary Science Letters, 1985/1986, 76: 279- 287.
[37] Anderson R F, Lao Y, Broecker W S, et al. Boundary scavenging in the Pacific Ocean: a comparison of 10Be and 231Pa[J]. Earth and Planetary Science Letters, 1990, 96: 287- 304.
[38] Lao Y, Anderson R F, Broecker W S, et al. Particulate fluxes of 230Th, 231Pa, and 10Be in the northeastern Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1993, 57: 205- 217.
[39]Somayajulu B L K, Sharma P, Beer J, et al.10Be annual fallout in rains in India[J]. Nuclear Instruments and Methods in Physical Research, 1984, B5: 398- 403.
[40] Chen C T A. The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf[J]. Oceanologica Acta, 1996, 19: 523- 527.
[41] Chen C T A, Ruo R, Pai S C, et al. Exchange of water masses between the East China sea and the Kuroshio of northeastern Taiwan[J]. Continental Shelf Research, 1995, 15: 19- 39.
[42] Yang Y-L, Elderfield H, Ivanovich M. Glacial to Holocene changes in carbonate and clay sedimentation in the equatorial Pacific Ocean estimated from 230Th profiles[J]. Paleoceanography, 1990, 5(5): 789-809.
[43] Yang Y-L, Elderfield H, Pedersen T F, et al. Geochemical record of the Panama basin during the last glacial maximum carbon event shows that the glacial ocean was not suboxic[J]. Geology, 1995, 23(12), 1 115-1 118.
[44] Kumar N, Gwiazda R, Anderson R F, et al. 231Pa/230Th ratios in sediments as a proxy for past changes in southern ocean productivity[J]. Nature, 1993, 362: 45-48.
[45]Qin Yunshan, Zheng Tiemin. Preliminary Discussion of the distributional characteristics of of sediments in the continental shelf of the East China Sea[A]. Geology of the Yellow Sea and the East China Sea[C]. Beijing: Science Press, 1982.39- 51. [秦蕴珊, 郑铁民. 东海大陆架沉积物分布特征的初步探讨[A]. 黄东海地质[C]. 北京:科学出版社, 1982.39-51.]
[46] Zhao Yiyang, Yan Mingcai. Geochemistry of Sediments of Shallow Seas of China[M]. Beijing: Science Press, 1994. [赵一阳, 郾明才. 中国浅海沉积物地球化学[M]. 北京:科学出版社, 1994.]
[47] Kim Y L. Marine Geology of the East China Sea[M]. Beijing: Ocean Press, 1992.524.
[48] Yanagi T. Material transport in the Yellow/East China Seas[J]. Bulletin on Coastal Oceanography, 1994, 31: 239- 256.
[49] Yanagi T, Takahashi S, Hoshika A, et al. Seasonal variation in the transport of suspended matter in the East China Sea[J]. Journal of Oceanography, 1996, 52: 539- 552. 
[50] Nozaki Y, Kasemsupaya V, Tsubota H, et al. Mean residence time of the shelf water in the East China Sea and the Yellow Seas determined by 228Ra/226Ra measurements[J]. Geophysical Research Letters, 1989, 16: 1 297-1 300.
[51] Zhai Shikui, Chen Lirong, Shen Shunxi, et al. Evolution of magma activity in early expansion of the Okinawa trough [J]. Acta Oceanologica Sinica, 1994, 3: 61-73. [翟世奎, 陈丽蓉,申顺喜, 等. 冲绳海槽早期扩张作用中岩浆活动的演化[J]. 海洋学报, 1994, 3: 61-73. ]

[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[3] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[4] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[5] 刘娜, 王辉, 凌铁军, 祖子清. 全球业务化海洋预报进展与展望[J]. 地球科学进展, 2018, 33(2): 131-140.
[6] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
[7] 於维樱, 冯志纲, 王琳. 加拿大海洋学研究态势与最新进展分析[J]. 地球科学进展, 2016, 31(5): 542-552.
[8] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
[9] 杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 焦守涛, 王淑华. 弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比[J]. 地球科学进展, 2016, 31(1): 66-77.
[10] 侯荣娜, 王淑华, 张翔, 侯克选, 张铖, 王金荣. 中祁连西段花岗岩类的地球化学特征及构造意义[J]. 地球科学进展, 2015, 30(9): 1034-1049.
[11] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[12] 方维萱, 李建旭. 智利铁氧化物铜金型矿床成矿规律、控制因素与成矿演化[J]. 地球科学进展, 2014, 29(9): 1011-1024.
[13] 段静, 陈朝晖, 吴立新. 黑潮源区海流季节内变化观测分析[J]. 地球科学进展, 2014, 29(4): 523-530.
[14] 常凤鸣,李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
[15] 梁丹,刘传联. 颗石藻元素地球化学研究进展[J]. 地球科学进展, 2012, 27(2): 217-223.