1. 1.北京大学城市与环境学系,北京  100871;
2.东北师范大学地理系,吉林 长春  130024
• 收稿日期:2000-05-23 修回日期:2000-08-12 出版日期:2001-04-01
• 通讯作者: 陈彦光(1965-),男,河南罗山人,副教授,主要从事地理分形和地理系统的空间复杂性研究. E-mail:liu@nenu.edu.cn
• 基金资助:

国家自然科学基金资助项目“城市体系空间网络的分形结构及其演化机制”(编号:40071035)中关于“城市环境支持系统”的部分研究内容资助。

### FRACTALS AND FRACTAL DIMENSIONS OF STRUCTURE OF RIVER SYSTEMS:MODELS RECONSTRUCTION AND PARAMETERS INTERPRETATION OF HORTON’S LAWS OF NETWORK COMPOSITION

CHEN Yan-guang 1,  LIU Ji-sheng 2

1. 1.Department of Urban and Environmental Sciences,Peking University,Beijing  100871,China;
2.Department of Geography,Northeast Normal University,Changchun  130024,China

Based on standard fractal stream system model and mirror image symmetry of series of channel classes, the first three models of Horton’s laws of network composition can be ‘reconstructed’ by mirror writing the ordinal numbers of channels,i.e., writing ordinals from the highest level to the grass roots. ① From the first and the second laws, we deduce out a three parameter Zipf’s model, L(r)=C(r-a) -dz ,where r is the rank of a river in a network which is marked in order of size, L(r) is the length of the r th river, as for parameters C=L1[Rb /(Rb -1)] dz , a=1/(1-Rb),and dz=ln Rl/ln Rb=1/ D. In the parameter expressions, Rb and Rl are the bifurcation ratio and length ratio respectively, and D is the fractal dimension of river hierarchies. ② From the second and the third laws, a generalized Hack’s model is derived out as Lm=μAbm, where L m is the length of the mth order river, A m is the corresponding catchment area, μ=L1A-b1,b= ln Rl/lnRa, and in the parameters, Ra is basin area ratio, L1 is the main stream length, and A1 is the drainage area of the mainstream. It is evident that L1=μAb1 is the classical Hack model. ③ From the first and the third laws, an allometric relationship is deduced as Nm= ηA-σm,where N m is the number of mth order rivers, Am is corresponding catchment area, η=N1Aσ1,σ= lnRb/lnRa. As an attempt, the geographical space is divided into three: Space 1, existence space real space; Space 2, evolution space phase space; Space 3, correlation space order space. Defining Dr, Dn, and Ds as the fractal dimension of rivel, network, and catchment area in real space, and Dl, Db, and Da as the generalized dimension corresponding to Dr, Dn, and Ds, we can construct a set of fractal dimension equations as follows, dz = Dl/ Db=ln Rl/ln RbDr/ Dn, b=Dl/ Da=ln Rl/ln RaDr/ Ds, and σ=Db/ Da=ln Rb/ln RaDn/ Ds. These equations show the physical distinction and mathematical relationships between varied dimensions of a system of rivers.

 [1]  Batty M.Physical phenomena[J]. Geographical Magazine,1992, (7):35~36. [2]  La Barbera P, Rosso R.On the fractal dimension of stream networks[J]. Water Resources Research, 1989, 25(4):735~741. [3]  Li Houqinag, Ai Nanshan. Fractal geomorphology and fractal models of landform evolution[J].Journal of Nature, 1992,15(7):516~519.[李后强,艾南山.分形地貌学及地貌发育的分形模型[J].自然杂志,1992,15(7):516~519.] [4]  Turcotte D L.Fractals and Chaos in Geology and Geophysics[M]. Cambridge: Cambridge University Press,1992. [5]  Takayasu H. Fractals[M]. Translated by Shen Buming,Chang Ziwen. Beijing: Earthquake Press, 1989.[高安秀树著.分数维[M].沈步明,常子文译.北京:地震出版社,1989.] [6]  Feng Ping, Feng Yan. Calculation on fractal dimension of river morphology [J]. Acta Geographica Sinica, 1997, 52(4):324~330.[冯平,冯焱.河流形态特征的分维计算方法[J].地理学报,1997,52(4):324~330.] [7]  Tarboton D G, Bras R L, Rodriguez-Iturbe I. The fractal nature of river networks[J]. Water Resources Research, 1988,24(8):1 317~1 322. [8]  Feder J. Fractals[M]. New York:Plenum Press,1988.208~211. [9]  Rosso R, Bacchi B, La Barbera P. Fractal relation of mainstream length to catchment area in river networks[J]. Water Resources Research, 1991,27(3):381~387. [10]  Marani A, Rigon R,Rinaldo A. A note on fractal channel network [J]. Water Resources Research, 1991, 27 (12):3 041~3 049 [11]  Robert A,Roy A G. On the fractal interpretation of the mainstream length-drainage area relationship[J]. Water Resources Research,1990,26(5):839~842. [12]  Kaye B H. A Random Walk Through Fractal Dimensions[M]. New York: VCH Rublishers,1989. [13]  Ai Nanshan, Chen Rong, Li Houqiang. A way to fractal geomorphology[J]. Geography and Territorial Research, 1999,15(1):92~96.[艾南山,陈嵘,李后强.走向分形地貌学[J].地理学与国土研究,1999,15(1):92~96.] [14]  He Longhua, Zhao Hong. The fractal dimension of river networks and its interpretation[J]. Scientia Geographica Sinica,1996, 16(2): 124~128.[何隆华,赵宏.水系的分形维数及其含义[J].地理科学,1996,16(2):124~128.]
 [1] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631. [2] 苏绕绕, 赵珍. 16世纪末以来北运河水系演变及驱动因素[J]. 地球科学进展, 2021, 36(4): 390-398. [3] 孟宪萌,张鹏举,周宏,刘登峰. 水系结构分形特征的研究进展[J]. 地球科学进展, 2019, 34(1): 48-56. [4] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492. [5] 孙寅森, 郭少斌. 基于图像分析技术的页岩微观孔隙特征定性及定量表征[J]. 地球科学进展, 2016, 31(7): 751-763. [6] 苏强. 群落物种多度格局的分形解析[J]. 地球科学进展, 2015, 30(10): 1144-1150. [7] 赵春红, 李强, 梁永平, 许亮, 王维泰, 卢海平, 唐春雷. 北京西山黑龙关泉域岩溶水系统边界与水文地质性质[J]. 地球科学进展, 2014, 29(3): 412-419. [8] 张朝林，宋长青. “复杂构型涡旋移动动力学的研究”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1062-1063. [9] 栾海军，田庆久，余 涛，胡新礼，黄彦，刘李，杜灵通，魏曦. 定量遥感升尺度转换研究综述[J]. 地球科学进展, 2013, 28(6): 657-664. [10] 姚旭, 周瑶琪, 李素, 李斗. 硅质岩与二叠纪硅质沉积事件研究现状及进展[J]. 地球科学进展, 2013, 28(11): 1189-1200. [11] 刘春茹，尹功明，Rainer Grün. 石英ESR测年信号衰退特征研究进展[J]. 地球科学进展, 2013, 28(1): 24-30. [12] 刘巧， 刘时银. 冰川冰内及冰下水系研究综述[J]. 地球科学进展, 2012, 27(6): 660-669. [13] 范代读，王扬扬，吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515-528. [14] 郭毅,赵景波. 1368—1948年陇中地区干旱灾害时间序列分形特征研究[J]. 地球科学进展, 2010, 25(6): 630-637. [15] 唐学远，孙波，李院生，崔祥斌，李鑫. 南极冰盖研究最新进展[J]. 地球科学进展, 2009, 24(11): 1210-1218.