地球科学进展 ›› 2000, Vol. 15 ›› Issue (5): 503 -508. doi: 10.11867/j.issn.1001-8166.2000.05.0503

学术论文 上一篇    下一篇

长江流域历史洪水的周期地理学研究
刘沛林   
  1. 衡阳师范学院地理系,湖南 衡阳 421008
  • 收稿日期:1999-10-28 修回日期:2000-01-29 出版日期:2000-10-01
  • 通讯作者: 刘沛林(1963-),男,湖南汉寿人,教授,近年来重点从事长江水灾问题和区域生态安全体系问题研究。
  • 基金资助:

    湖南省教委青年基金项目“长江流域历史洪水变化的周期地理学研究”(编号:99B16)资助。

THE CYCLIC GEOGRAPHY STUDY ON THE HISTORICAL FLOODS IN THE YANGTZE RIVER

LIU Pei-lin   

  1. Department of Geography,Hengyang Normal University,Hengyang 421008,China
  • Received:1999-10-28 Revised:2000-01-29 Online:2000-10-01 Published:2000-10-01

从周期地理学的角度,探讨长江历史洪水的频发特点和周期规律,认为影响长江历史洪水的基本周期因子,与近日点日月交食年周期、太阳黑子活动周期和历史气候周期等因素有较大的关联性。而近几个世纪以来长江洪水频率的不断加快,表明人类活动扰乱和改变了历史洪水原有的周期值,使长江历史洪水周期打上了人类活动的深刻烙印。

As a newly-developed science, Cyclic geography mainly studies geographic phenomena and their regularities of change and their cyclicity.The present paper, from the point of view of cyclic geography, discusses the frequency and cyclic regularities of the historical floods in the Yangtze river, and reaches the following conclusion: (1) There exists a connection between the essential cyclic factors that influence the historical floods in the Yangtze river and the cycle of having both the solar and lunar eclipse in the same year at the perihelion, the cycle of the movement of the sunspot, and the historical cycle of climate;(2) The cyclic features of the historical floods in the Yangtze river are shown on two different scales, either big or small. The smaller cycle as obtained from the historical statistics is 9.73 years, identical with that of the year having both the solar and lunar eclipse at the perihelion (about 9 years) and the cycle of the movement of sunspot (the average is 11 years, with the shortest being 9 years). Analysis through the multi-regression equation shows that the tendency of the historical floods advance wave upon wave, with each trough and each wave crest leaping over one or two centuries. It reflects one great cycle which coincides with the tendency of the global climatic wave motion;(3) The cycle of the historical floods in the Yangtze river is greatly influenced by human activities. The soil erosion in the Yangtze river valley, the silt up of rivers and lakes, the raise of water level all resulted from the unplanned development of the land and over-reclaimation and cultivation of wasteland. The cycle of frequent floods coincides with the cycle of the historical population growth in the river valley. The accelerated pace of the frequency of the floods in the Yangtze river in the past few centuries reflects that human activities have obvious intervening function upon the cycle of floods, which have changed the essential cycle of floods in the Yangtze river.

中图分类号: 

[1] 韩永学主编.新概念人文地理学[M].哈尔滨:哈尔滨地图出版社,1998.246~260.
[2] 倪京苑.在近日点交食年我国江河水文气象的异常现象初探[J].人民长江,1987,(6):47~51.
[3] 唐佑民,郭岚.我国旱涝影响因子探讨[J].地理科学,1990,(1):77~84.
[4] Eddy J A B. The Maunder minimum[J].Science, 1976,192(4245):1 189~1 202.
[5] 竺可桢.中国近五千年来气候变迁的初步研究[J].中国科学,1973,(2):291~296.
[6] 朱诚,于世永,卢春成.长江三峡及江汉平原地区全新世环境考古与异常洪涝灾害研究[J].地理学报,1997,(3):268~276.
[7] Lise L Ely, Yehouda Enzel, Victor R Baker,et al. A 5000-year record of extreme floods and climate change in the South-western United States[J]. Science, 1993,262(15):410~411.
[8] 陈海龙.长江流域近千年旱涝规律研究[J].地理科学,1987,(3):197~205.
[9] Brooks C. Climate Through the Ages[M]. London,1926.转引自冀朝鼎.中国历史上的基本经济区与水利事业的发展[M].北京:中国社会科学出版社,1981.38.
[10] 周凤琴.荆江近5 000年来洪水位变迁的初步探讨[A].历史地理(四)[C].上海:上海人民出版社,1986.46~53.
[11] 刘沛林.历史上人类活动对长江流域水灾的影响[J].北京大学学报(社科版),1998,(6):144~151.
[12] 雍正朝汉文朱批奏折汇编.册10,折154[M].南京:江苏古籍出版社,1986.224.

[1] 栾威, 申文斌. 地球内核平动振荡模研究进展[J]. 地球科学进展, 2021, 36(5): 461-471.
[2] 陈仁升, 沈永平, 毛炜峄, 张世强, 吕海深, 刘永强, 刘章文, 房世峰, 张伟, 陈春艳, 韩春坛, 刘俊峰, 赵求东, 郝晓华, 李如琦, 秦艳, 黄维东, 赵成先, 王书峰. 西北干旱区融雪洪水灾害预报预警技术:进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
[3] 夏军, 陈进, 王纲胜, 程丹东. 2020年长江上游洪水看流域防洪对策[J]. 地球科学进展, 2021, 36(1): 1-8.
[4] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[5] 王军,江琴. 长江经济带多灾种综合风险评价与防范的思考[J]. 地球科学进展, 2020, 35(8): 816-825.
[6] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[7] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[8] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[9] 王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
[10] 陶亚玲, 常宏. 长江第一湾附近构造作用下的河流地貌演化[J]. 地球科学进展, 2017, 32(5): 488-501.
[11] 吴伊婧, 范代读, 印萍, 胡虞杨. 近岸底层水体低氧沉积记录研究进展[J]. 地球科学进展, 2016, 31(6): 567-580.
[12] 姚蓬娟, 王春乙, 张继权. 长江中下游地区双季早稻冷害、热害危险性评价[J]. 地球科学进展, 2016, 31(5): 503-514.
[13] 王文, 孙畅, 蔡晓军, 许金萍. 南亚高压低频振荡与长江中下游地区旱涝的关系[J]. 地球科学进展, 2016, 31(5): 529-541.
[14] 张洪瑞, 刘传联, 梁丹. 热带海洋生产力:现代过程与地质记录[J]. 地球科学进展, 2016, 31(3): 277-285.
[15] 顾磊, 张洪波 , 陈克宇, 俞奇骏. 陕北地区河川基流的时空演变规律[J]. 地球科学进展, 2015, 30(7): 802-811.
阅读次数
全文


摘要