地球科学进展 ›› 2015, Vol. 30 ›› Issue (10): 1144 -1150. doi: 10.11867/j.issn. 1001-8166. 2015.10.1144.

上一篇    下一篇

群落物种多度格局的分形解析
苏强( )   
  1. 1.中国科学院计算地球动力学重点实验室,北京 100049
    2.中国科学院大学,北京 100049
  • 收稿日期:2015-06-06 修回日期:2015-09-10 出版日期:2015-10-20
  • 基金资助:
    中国科学院海洋战略先导科技专项“黑潮及其变异对南海东北生产力与生物多样性分布格局的影响”(XDA11020203);北京师范大学生物多样性与生态工程教育部重点实验室开放基金“群落物种多度格局的分形解析”(编号:K201504)资助

Analyzing Fractal Property of Species Abundance Distribution in A Community

Qiang Su( )   

  1. 1. Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049
    2. University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-06-06 Revised:2015-09-10 Online:2015-10-20 Published:2015-10-20

生物群落物种多度格局(Species Abundance Distribution, SAD)研究是理解物种多样性决定机制的关键。这个问题不仅关系到物种多样性的保护与恢复,更重要的是,它有助于理清生物群落中各个物种之间错综复杂的相互关系,以及物质与能量在群落中的分配方式。群落物种多度格局研究的核心内容是如何构建SAD生态模型。该类研究始于20世纪30年代,相对已有的SAD模型而言,分形模型对生物群落样本的要求简单,适用性较高,便于不同群落间的比较。鉴于此,从分形模型的起源、假设条件、构建方法、分形参数的生态意义以及存在的问题等几个方面进行总结,以期促进此项工作的开展,为物种多度格局和多样性决定机制研究提供帮助。

The study of Apecies Abundance Distribution (SAD) is the key of understanding what determines species diversity. The theoretical exploration of SAD relates to the maintenance and conservation of biodiversity, and more importantly, it is conducive to clarifying complicated relationship among species and the distribution of matter and energy in a community. The research on SAD began in the 1930s, and there are so many kinds of theoretical models of SAD that can fit actual data, such as geometric-series model, log-series model, log-normal model, broken-stick model and so on. However, despite this, these models are often restrictive in their hypotheses and difficult to fit by natural communities. Especially, there is not always a good fit to the community that only has a few species. Thus, Frontier firstly introduced a family of models termed the Zipf-Mandelbrot model. This model is unrestrictive and easily fit by different natural community. Accordingly, this paper reviewed its origin, hypothesis, construction, problems and ecological signification of parameters to promote the research of SAD and the determination of species diversity.

中图分类号: 

图1 生物群落物种多度随排序位数的递减方式 按物种多度由大到小排序,每个物种由横坐标的排序位数(r)和纵坐标的多度(Nr)进行标记。该散点图的递减方式:可能是线性的(如群落A),下弧形的(如群落B)或上弧形等
Fig.1 The monotonically decreasing pattern of a community ordered in species abundance Ranking species abundance from largest to smallest, the decreasing pattern with the rank on the abscissa and relative abundance on the ordinate have three theoretical possibilities: Linear(A),convex(B),or concave
图2 理论分形树 [ 30 ] 在分形树的3个等级内(1,2,3),分支数量每增加3倍(K),分支大小缩小2倍(k),总计13个自相似单元,分形维数d=1.585
Fig.2 Theoretical fractal tree [ 30 ] During three steps of the succession in theoretical fractal tree(1,2,3), 3 times (K) branch number appear which are 2 times (k) less -size. There are totally 13 auto similar elements, and the fractal dimension is 1.585
表1 在第 i个分形等级上,新增物种数量 Ri以及该等级上物种的多度 Ni如表所示 [ 30 ]
Table 1 At the i-th fractal step, numbers of new species ( Ri) and its relative abundance ( Ni) during ecological succession is shown in the following table [ 30 ]
图3 Zipf-Mandelbrot模型对蝴蝶和甲虫群落的拟合结果 以群落物种多度为序,排序位数(r)作为横坐标,相对多度(Fr=Nr/NT)作为纵坐标,并进行双对数变换,Zipf-Mandelbrot模型的拟合结果如下:(a)树冠层蝴蝶群落样本,β=0.88,γ=1.77;(b)灌木层蝴蝶群落样本,β=2.42,γ=1.41[ 31 ];甲虫群落1(c)和2(d)的分形参数(βγ)分别为0.57和1.84,以及2.01和1.33[ 32 ]
Fig. 3 The fit results of Zipf-Mandelbrot model to SADs of butterflies and beetles communities Ranking species by their abundance in descending order, the SAD is presented with the rank (r) on the abscissa and relative abundance (Fr=Nr/NT) on the ordinate using log-log axes. Results of Zipf-Mandelbrot model to the actual data are as follows: β=0.88 and γ=1.77 in the canopy butterfly community (a); β=2.42 and γ=1.41in the understory butterfly community (b) [ 31 ]; Fractal parameters (β and γ) in beetles communities (1 and 2) are 0.57/1.84 and 2.01/1.33, respectively[ 32 ]
[1] Pennisi E.What determines species diversity[J]. Science, 2005,309:90.
[2] Zhu Biru, Zhang Dayong.A process—Based theoretical framework for community ecology[J]. Biodiversity Science,2011,(4):389-399.
[朱璧如, 张大勇. 基于过程的群落生态学理论框架[J]. 生物多样性,2011,(4):389-399.]
[3] Zhou Shurong, Zhang Dayong.Neutral theory in community ecology[J]. Journal of Plant Ecology, 2006,(5):868-877.
[周淑荣, 张大勇. 群落生态学的中性理论[J]. 植物生态学报,2006,(5):868-877.]
[4] Zhang Quanguo, Zhang Dayong.Biodiversity and ecosystem functioning: Recent advances and trends[J]. Biodiversity Science, 2003, (5):351-363.
[张全国, 张大勇.生物多样性与生态系统功能:最新的进展与动向[J]. 生物多样性, 2003,(5):351-363.]
[5] Xing Dingliang, Hao Zhanqing.The principle of maximum entropy and its applications in ecology[J]. Biodiversity Science, 2011,(3):295-302.
[邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用[J]. 生物多样性,2011,(3):295-302.]
[6] Niu Kechang, Liu Yining, Shen Zehao, et al.Community assembly: The relative importance of neutral theory and niche theory[J]. Biodiversity Science,2009,17(6):579-593.
[牛克昌, 刘怿宁,沈泽昊,等.群落构建的中性理论和生态位理论[J]. 生物多样性,2009,17(6):579-593.]
[7] Ma Keming.Advances of the study on species abundance pattern[J]. Journal of Plant Ecology,2003,(3):412-426.
[马克明. 物种多度格局研究进展[J]. 植物生态学报,2003,(3):412-426.]
[8] Feng Gang, Zhang Jinlong, Pei Nancai, et al. Comparison of phylobetadiversity indices based on community data from Gutianshan forest plot[J]. Chinese Science Bulletin,2011,56(34):2 857-2 864.
[冯刚, 张金龙, 裴男才,等.系统发育β多样性指数的比较:以古田山样地为例[J]. 科学通报,2011,56(34):2 857-2 864.]
[9] Yakimov B N, Gelashvili D B,Solntsev L, et al.Nonconcavity of mass exponents’ spectrum in multifractal analysis of community spatial structure: The problem and possible solutions[J]. Ecological Complexity, 2014,20:11-22, doi: 10.1016/j.ecocom.2014.07.003.
[10] Xiao X, McGlinn D J,White E P. A strong test of the maximum entropy theory of ecology[J].American Naturalist, 2015, 185:E70-E80.
[11] Zhang Chunyu.Explaining diversity patterns of forest community through species interactions[J]. Journal of Beijing Forestry University, 2014,(6):60-65.
[张春雨. 通过种群互作阐释森林群落多样性格局[J]. 北京林业大学学报,2014,(6):60-65.]
[12] Ma Keming, Liu Yuming.Measurement method of biological community diversityⅠmeasuring α diversity (2)[J]. Biodiversity Science,1994,(4):231-239.
[马克平,刘玉明. 生物群落多样性的测度方法Ⅰα多样性的测度方法(下)[J]. 生物多样性,1994,(4):231-239.]
[13] Ma Keming.Measurement method of biological community diversityⅠmeasuring α diversity (1)[J].Biodiversity Science,1994,(3):162-168.
[马克平. 生物群落多样性的测度方法Ⅰα多样性的测度方法(上)[J].生物多样性,1994,(3):162-168.]
[14] Chao A, Hsieh T C, Chazdon R L, et al.Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory[J]. Ecology, 2015,96:1 189-1 201.
[15] Loeuille N, Leibold M A.Effects of local negative feedbacks on the evolution of species within metacommunities[J]. Ecology Letters, 2014,17:563-573.
[16] Supp S R, Ernest S K M. Species-level and community-level responses to disturbance: A cross-community analysis[J]. Ecology, 2014,95:1 717-1 723.
[17] Matthews T J, Borges P A V, Whittaker R J, et al. Multimodal species abundance distributions: A deconstruction approach reveals the processes behind the pattern[J]. Oikos, 2014,123:533-544.
[18] Pielou E C.Ecological Diversity[M].New York:John Willey and Sons, 1975.
[19] Frontier S.Applications of fractal theory to ecology[M]∥Develoments in Numerical Ecology. Berlin Heidelberg: Springer, 1987:335-378.
[20] Harte J, Kitzes J.Inferring regional-scale species diversity from small-plot censuses[J]. Plos One, 2015,10(2): e0117527, doi: 10.1371/journal.pone.0117527.
[21] Tokeshi M.Species abundance patterns and community structure[J]. Advances in Ecological Research, 1993,24:111-186.
[22] McGill B J, Etienne R S, Gray J S, et al. Species abundance distributions: Moving beyond single prediction theories to integration within an ecological framework[J].Ecology Letters, 2007,10:995-1 015.
[23] May R M.Theoretical Ecology-Principles and Applications (3rd)[M].Oxford: Oxford University Press, 1981.
[24] Mouillot D, Leprêtre A, Marie-Cécile Andrei-Ruiz, et al. The Fractal Model: A new model to describe the species accumulation process and Relative Abundance Distribution (RAD)[J]. Oikos, 2000,90:333-342.
[25] Frontier S.Diversity and structure in aquatic ecosystems[J]. Oceanography and Marine Biology, 1985,23:253-312.
[26] Zipf G K.Human Behavior and the Principle of Least Effort[M].Cambridge: Wesley Press, 1949.
[27] Mandelbrot B B.The Fractal Geometry of Nature[M].New York: Macmillan, 1983.
[28] Mandelbrot B.An informational theory of the statistical structure of language[J]. Communication Theory, 1953,84:486-502.
[29] Seuront L.Fractals and Multifractals in Ecology and Aquatic Science[M].Florida: CRC Press, 2009.
[30] Frontier S.Species diversity as a fractal property of biomass[M]∥Novak M, ed. Fractals in the Natural and Applied Sciences. Amsterdam: North-Holland Publishing, 1994:119-127.
[31] Devries P J, Walla T R.Species diversity and community structure in neotropical fruit-feeding butterflies[J]. Biological Journal of the Linnean Society, 2001,74:1-15.
[32] Kontkanen P.On the delimitation of communities in research on animal biocoenotics[M]∥Cold Spring Harbor Symposia on Quantitative Biology. New York: Cold Spring Harbor Laboratory Press, 1957:373-378.
[33] Zhang Junlong, Xu Kuidong.Progress and prospects in seamount biodiversity[J]. Advances in Earth Science, 2013,(11):1 209-1 216.
[张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展,2013,(11):1 209-1 216.]
[34] Zhao Feng, Xu Kuidong.Advances in the diversity of microbial eukaryotes in deep sea[J]. Advances in Earth Science, 2014,29(5):551-558.
[赵峰, 徐奎栋. 深海真核微生物多样性研究进展[J]. 地球科学进展,2014,29(5):551-558.]
[35] Spiridonov A, Brazauskas A,Radzevicius S.The role of temporal abundance structure and habitat preferences in the survival of conodonts during the mid-early silurian ireviken mass extinction event[J]. Plos One, 2015,10(4),doi: 10.1371/journal.pone.0124146.
[36] Halley J M, Hartley S, Kallimanis A S, et al.Uses and abuses of fractal methodology in ecology[J]. Ecology Leterst, 2004,7:254-271.
[37] Hubbell S P.The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32)[M].Princeton: Princeton University Press, 2001.
[1] 高俊峰,苏强. 群落物种多度的分形模型和一般性分布规律的验证与探讨[J]. 地球科学进展, 2021, 36(6): 625-631.
[2] 翁成郁. 巽他区域地质气候环境演变与陆地生物多样性形成与变化[J]. 地球科学进展, 2017, 32(11): 1163-1173.
[3] 王军, 李红涛, 郭义强, 王平安. 煤矿复垦生物多样性保护与恢复研究进展[J]. 地球科学进展, 2016, 31(2): 126-136.
[4] 邓涛, 王晓鸣, 王世骐, 李强, 侯素宽. 中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J]. 地球科学进展, 2015, 30(4): 407-415.
[5] 张均龙, 徐奎栋. 海山生物多样性研究进展与展望[J]. 地球科学进展, 2013, 28(11): 1209-1216.
[6] 何亚婷,齐玉春,董云社,彭琴,肖胜生,刘欣超. 外源氮输入对草地土壤微生物特性影响的研究进展[J]. 地球科学进展, 2010, 25(8): 877-885.
[7] 王丽,陈尚,任大川,柯淑云,李京梅,王栋. 基于条件价值法评估罗源湾海洋生物多样性维持服务价值[J]. 地球科学进展, 2010, 25(8): 886-892.
[8] 孙晓霞,孙松. 深海化能合成生态系统研究进展[J]. 地球科学进展, 2010, 25(5): 552-560.
[9] 魏玉利,王 鹏,赵美训,张传伦. 黑潮源区沉积物微生物多样性初步研究[J]. 地球科学进展, 2010, 25(2): 212-219.
[10] 张永民. 生物多样性的保育及可持续利用对策[J]. 地球科学进展, 2009, 24(6): 662-667.
[11] 李新荣,何明珠,贾荣亮. 黑河中下游荒漠区植物多样性分布对土壤水分变化的响应[J]. 地球科学进展, 2008, 23(7): 685-691.
[12] 王丽玲,林景星,胡建芳. 深海热液喷口生物群落研究进展[J]. 地球科学进展, 2008, 23(6): 604-612.
[13] 周杨明,于秀波,于贵瑞. 自然资源和生态系统管理的生态系统方法:概念、原则与应用[J]. 地球科学进展, 2007, 22(2): 171-178.
[14] 孙松,孙晓霞. 国际海洋生物普查计划[J]. 地球科学进展, 2007, 22(10): 1081-1086.
[15] 王兆印,程东升,何易平,王洪铸. 西南山区河流阶梯—深潭系统的生态学作用[J]. 地球科学进展, 2006, 21(4): 409-416.
阅读次数
全文


摘要