地球科学进展 ›› 2006, Vol. 21 ›› Issue (4): 394 -400. doi: 10.11867/j.issn.1001-8166.2006.04.0394

综述与评述 上一篇    下一篇

海底天然气水合物分解与甲烷归宿研究进展
陈忠 1,2,颜文 1,2,陈木宏 1,王淑红 1,2,肖尚斌 1,陆钧 1,杨华平 1,2   
  1. 1.中国科学院南海海洋研究所,广东 广州  510301;2.中国科学院广州天然气水合物研究中心,广东 广州  510301
  • 收稿日期:2005-09-05 修回日期:2006-02-21 出版日期:2006-04-15
  • 通讯作者: 陈忠 E-mail:chzhsouth@scsio.ac.cn
  • 基金资助:

    国家自然科学基金项目“南海自然铝的成因及其对寻找油气、天然气水合物的指示意义”(编号:40406011);国家863计划青年基金项目“南海某些特征自生矿物的形成机理对水合物、油气探查的敏感性研究”(编号:2004AA616090)资助.

Advances in Gas Hydrate Dissociation and Fate of Methane in Marine Sediment

Chen Zhong 1,2,Yan Wen 1,2,Chen Muhong 1,Wang Shuhong 1,2,Xiao Shangbin 1,Lu Jun 1,Yang Huaping 1,2   

  1. 1.South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou 510301, China;2.Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510301,China
  • Received:2005-09-05 Revised:2006-02-21 Online:2006-04-15 Published:2006-04-15

综述了近年来天然气水合物分解与甲烷归宿等方面的研究成果。天然气水合物的汇聚与地质构造或地层圈闭有关,其溶解受物质转换控制,分解则受热转换控制。水合物释放甲烷的运移方式包括分散式、中心式和大规模排放式。缺氧氧化和耗氧氧化是甲烷在海洋环境中的2种主要转化方式。天然气水合物释放甲烷的最终归宿主要为:①重新形成天然气水合物;②形成化能自养生物群落和沉淀出碳酸盐沉积;③与氧发生氧化后转变为CO2;④直接排放进入到大气中。沉积物中的微构造、化能自养生物群落、自生碳酸盐矿物及其碳氧同位素组成是水合物释放事件的指纹记录。

Here we introduce and outline some advances of gas hydrate dissociation and fate of methane in marine sediment.A gas hydrate accumulation in sediments is related to a geological structure and/or stratigraphic trap, and the kinetic control for gas hydrate dissolution is mass transfer and that of dissociation is heat transfer. There are three main release types of methane release from gas hydrates within the accretionary sediment, such as distributed migration, focused migration and massive methane release.There now exists compelling evidence that anaerobic oxidation and aerobic oxidation of methane are two main reaction pathways in marine sediments and waters. Methane release by hydrate destabilization has been proposed to have four ultimate sinks, namely reformation gas hydrate, precipitation of carbonate minerals and formation of unique clam or tubeworm communities, transformation carbon dioxide,discharge into the atmosphere. The evidence preserved in the fossil sedimentary deposits, including sedimentary mictrostructures, nodular or encrusting diagenetic carbonates, specific benthic fauna and oxygen and carbon isotopic compositions of carbonates, might have registered the past occurrence of gas hydrates.

中图分类号: 

[1] Milkov A V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? [J]. Earth-Science Reviews,2004,66(3/4):183-197.

[2] Lelieveld J, Crutzen P J, Dentener F J. Changing concentration, life time and climate forcing of atmospheric methane[J]. Tellus,1998,50B:128-150.

[3] Kvenvolden K. Methane hydrate:A major reservoir of carbon in the shallow geosphere?[J]. Chemical Geology, 1988,71:41-51.

[4] Milkov A V, Sassen R. Economic geology of offshore gas hydrate accumulations and provinces[J]. Marine and Petroleum Geology,2002,19:1-11.

[5] Milkov A V. Molecular and stable isotope compositions of natural gas hydrates: A revised global dataset and basic interpretations in the context of geological settings[J]. Organic Geochemistry, 2005,36(5):681-702.

[6] Hovland M. Are there commercial deposits of marine hydrates in ocean sediments?[J]. Energy Exploration &. Exploitations, 2000,18:339-347.

[7] Zhang Y X,Xu Z J. Kinetics of convective crystal dissolution and melting, with applications to methane hydrate dissolution and dissociation in seawater[J]. Earth and Planetary Science Letters, 2003,213:133-148.

[8] Tishchenko P, Hensen C, Wallmann K, et al. Calculation of the stability and solubility of methane hydrate in seawater[J]. Chemical Geology, 2005, 219(1/4): 37-52.

[9] Brewer P G, Orr F M, Friederich G, et al. Deep-ocean field test of methane hydrate formation from a remotely operated vehicle[J]. Geology, 1997,25: 407-410.

[10] Zhang Y. Methane escape from gas hydrate systems in marine environment and methane-driven oceanic eruptions[J]. Geophysical Research Letters, 2003,30(7):1-4.

[11] Ryskin G. Methane-driven oceanic eruptions and mass extinctions[J]. Geology, 2003, 31(9):741-744.

[12] Lerche I, Bagirov E. Guide to gas hydrate stability in various geological settings[J]. Marine and Petroleum Geology,1998,15:427-437.

[13] Novosel I, Spence G D, Hyndman R D. Reduced magnetization produced by increased methane flux at a gas hydrate vent[J]. Marine Geology,2005,216(4):265-274.

[14] Sibuet M,Olu K. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins[J]. Deep-Sea Research Part II,1998,45:517- 567.

[15] Yu Xiaoguo,Li Jiabiao. Aadvances in gas hydrate dissociation and effects on the ecology and environment[J]. Advances in Earth Science,2004,19(6): 947-954.[于晓果,李家彪. 天然气水合物分解及其生态环境效应研究进展[J].地球科学进展,2004,19(6): 947-954].

[16] Leifer I S,MacDonald I. Dynamics of the gas flux from shallow gas hydrate deposits: Interaction between oily hydrate bubbles and the oceanic environment[J]. Earth and Planetary Science Letters,2003,210:411-424.

[17] Leifer I S, Patro R K. The bubble mechanism for transport of methane from the shallow sea bed to the surface: A review and sensitivity study[J]. Continental Shelf Research,2002,22:2 409-2 428.

[18] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature,2000, 407: 623-626.

[19] Valentine D L. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: A review[J]. Antonie van Leeuwenhoek,2002,81: 271-282.

[20] Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fuelled by anaerobic oxidation of methane[J]. Science,2002,297:1 013-1 015.

[21] Canfield D E, Berner R A. Dissolution and pyritization of magnetite in anoxic marine sediments[J]. Geochimica et Cosmochimica Acta, 1997, 51:645- 659.

[22] Schouten S, Wakeham S G, Damste J S S. Evidence for anaerobic methane oxidation by archaea in euxinic waters of the Black Sea[J]. Organic Geochemistry,2001,32:1 277-1 281.

[23] Valentine D L, Blanton D C, Reeburgh W S, et al. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin[J]. Geochimica et Cosmochimica Acta, 2001, 65(16): 2 633-2 640.

[24] Hensen C, Zabel M. Early diagenesis at the benthic boundary layer: Oxygen and nitrate in marine sediments[C]Schulz H D, Zabel M, eds. Marine Geochemistry. Berlin:Springer Verlag, 2000:209-231.

[25] Sauter E J, Schlüter M, Suess E. Organic carbon flux and remineralisation in surface sediments from the northern North Atlantic derived from pore water oxygen microprofiles[J]. Deep-Sea Research Part I, 2001, 48: 529-553.

[26] Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999,161:291-314.

[27] Bohrmann G, Suess E, Greinert J, et al. Gas hydrate carbonates from Hydrate Ridge, Cascadia Convergent Margin: Indicators of near-seafloor clathrate deposits[C]Proceeding of Fourth Intornational Conference Gas Hydrates.2002:102-107.

[28] Greinert J, Bohrmann G, Suess E. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: Classification, distribution and origin of authigenic lithologies[C]Paull C K, Dillon W P , eds. Natural Gas Hydrates: Occurrence, Distribution and Detection. Washington DC:American Geophysical Union,2001,124: 99-113.

[29] Thiel V, Peckmann J, Richnow H H, et al. Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat[J]. Marine Chemistry, 2001,73:97-112.

[30] Tryon M D, Brown K M. Complex flow patterns through Hydrate Ridge and their impact on seep biota[J]. Geophysical Research Letters,2001,28: 2 863-2 866.

[31] McGinnis D F, Wüest A, Schubert C J, et al. Upward flux of methane in the Black Sea: Does it reach the atmosphere?[C]Lee,Lam,eds. Environmental Hydraulics and Sustainable Water Management. London: Taylor & Francis Group, 2005:423-429.

[32] Damm E, Mackensena A, Bude G, et al. Pathways of methane in seawater: Plume spreading in an Arctic shelf environment (SW-Spitsbergen) [J]. Continental Shelf Research,2005,25:1 453-1 472.

[33] Damm E, Mackensena A, Bude G, et al. Pathways of methane in seawater: Plume spreading in an Arctic shelf environment (SW-Spitsbergen) [J]. Continental Shelf Research,2005,25:1 453-1 472.

[34] Mienert J, Posewang J, Baumann M. Gas hydrates along the northeastern Atlantic margin: Possible hydrate-bound margin instabilities and possible release of methane[J]. Geological Society Special Publication,1998,137: 275-291.

[35] Tsunogai U, Yoshida N, Ishibashi J, et al. Carbonisotopic distribution of methane in deep-sea hydrothermal plume,Myojin Knoll Caldera,Izu-Bonin arc:Implications for microbial methane oxidation in the oceans and applications to heat flux estimation[J]. Geochimica et Cosmochimica Acta, 2000, 64: 2 439-2 452.

[36] Suess E, Torres M E, Bohrmann G, et al. Gas hydrate destabilization: Enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin[J]. Earth and Planetary Science Letters,1999,170: 1-15.

[37] Suess E, Torres M E, Bohrmann G, et al. Sea floor methane hydrates at Hydrate Ridge, Cascadia margin[J]. American Geophysical Union Geophysical Monograph, 2001,124:87-98.

[38] Dickens G R, Castillo M M, Walker J C G. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate[J]. Geology,1997,25: 259-262.

[39] Katz M E, Pak D K, Dickens G R, et al. The sources and fate of massive carbon input during the latest Paleocene thermal maximum[J]. Science, 1999, 286:1 531-1 533.

[40] Bains S, Corfield M, Norris R D. Mechanisms of climate warming at the end of the Paleocene[J]. Science, 1999,285:724-727.

[41] Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during quaternary interstadials[J]. Science, 2000, 288:128-133.

[42] Pierre C, Rouchy J-M. Isotopic compositions of diagenetic dolomites in the Tortonian marls of the western Mediterranean margins: Evidence of past gas hydrate formation and dissociation[J]. Chemical Geology, 2004, 205(3/4):469-484.

[43] Huang Yongyang,Erwin E,Wu Nengyou. Geological settings and evidences of gas-hydrate occurring in the Northeast Dongsha area of South China Sea[C]Proceedings of Gas Hydrate colloquium between Taiwan and Motherland.Tainan,Taiwan,2005:3-4.[黄永样,Erwin S,吴能友.东沙海域东北天然气水合物存在的地质背景与证据[C]海峡两岸天然气水合物学术研讨会论文集.台湾台南,2005:3-4.]

[44] Chen Zhong,Yan Wen,Chen Muhong,et al. Discovery of seep authigenic carbonate nodules on northern continental slope of South China Sea: New evidence of gas hydrate[J]. Journal of Tropical Oceanography, 2006,25(1):83.[陈忠,颜文,陈木宏,.南海北部大陆坡冷泉碳酸盐结核的发现:天然气水合物新证据[J].热带海洋学报,2006,25(1):83.]

[45] Chen Zhong, Yan Wen, Chen Muhong, et al. Discovery of seep carbonate nodules as new evidence for gas venting on the northern continental slope of Sourth China Sea[J]. Chinese Science Bulletin,2006,in press.[陈忠,颜文,陈木宏,.南海北部陆坡冷泉碳酸盐结核的发现:海底天然气渗漏活动的证据[J].科学通报,2006(待刊).]

[1] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[2] 肖红平, 林畅松, 彭涌, 魏伟, 张金华, 张巧珍. 天然气水合物油气系统概念内涵及实例分析[J]. 地球科学进展, 2017, 32(1): 21-33.
[3] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[4] 刘乐乐,张旭辉,鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展, 2012, 27(7): 733-746.
[5] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[6] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
[7] 陈礼仪,王 胜,张永勤. 高原冻土天然气水合物钻探低温泥浆基础液研究[J]. 地球科学进展, 2008, 23(5): 469-473.
[8] 吴青柏,程国栋. 多年冻土区天然气水合物研究综述[J]. 地球科学进展, 2008, 23(2): 111-119.
[9] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[10] 祝有海. 加拿大马更些冻土区天然气水合物试生产进展与展望[J]. 地球科学进展, 2006, 21(5): 513-520.
[11] 于晓果;李家彪. 天然气水合物分解及其生态环境效应研究进展[J]. 地球科学进展, 2004, 19(6): 947-954.
[12] 吴能友,陈弘,蔡秋蓉,王宏斌. 科学大洋钻探与天然气水合物[J]. 地球科学进展, 2003, 18(5): 753-758.
[13] 高兴军,于兴河,李胜利,段鸿彦. 地球物理测井在天然气水合物勘探中的应用[J]. 地球科学进展, 2003, 18(2): 305-311.
[14] 陈多福,徐文新,吴时国,宋海斌,姚伯初. 美国天然气水合物研究计划介绍[J]. 地球科学进展, 2003, 18(2): 321-325.
[15] 狄永军,郭正府,李凯明,于开宁. 天然气水合物成因探讨[J]. 地球科学进展, 2003, 18(1): 138-143.
阅读次数
全文


摘要