Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (8): 842-854    DOI: 10.11867/j.issn.1001-8166.2019.08.0842
综述与评述     
无人机涡动相关通量观测技术研究综述
孙义博1,2(),苏德1,2(),全占军1,商豪律3,耿冰4,林兴稳5,荆平平6,包扬1,2,赵艳华1,2,杨巍1,2
1. 中国环境科学研究院 中国环境科学研究院环境生态科学研究所 环境基准与风险评估国家重点实验室 国家环境保护区域生态过程与功能评估重点实验室,北京 100021
2. 井冈山生态环境综合观测研究站,江西 井冈山 343699
3. 中国科学院空天信息研究院数字地球重点实验室,北京 100094
4. 中国社会科学院城市发展与环境研究所,北京 100028
5. 浙江师范大学地理与环境科学学院,浙江 金华 321004
6. 国家海洋技术中心,天津 300112
Overview of the UAV—Based Eddy Covariance Fluxes Measurements Technique
Yibo Sun1,2(),De Su1,2(),Zhanjun Quan1,Haolü Shang3,Bing Geng4,Xingwen Lin5,Pingping Jing6,Yang Bao1,2,Yanhua Zhao1,2,Wei Yang1,2
1. Institute of Environmental Ecology, State Key Laboratory of Environmental Criteria and Risk Assessment, State Environment Protection Key Laboratory of Regional Eco-Process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100021, China
2. Integrated Ecological Observation and Research Station of Jinggangshan, Jinggangshan Jiangxi 343699, China
3. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
4. Institute for Urban and Environment Studies, Chinese Academy of Social Sciences, Beijing 100028, China
5. College of Geography and Environment Science, Zhejiang Normal University, Jinhua Zhejiang 321004, China
6. National Ocean Technology Center, Tianjin 300112, China
 全文: PDF(6695 KB)   HTML
摘要:

机载涡动相关方法是进行区域尺度地表通量观测最有效的方式之一,其观测的空间尺度与陆面过程模式的网格尺度以及遥感影像的像元尺度一致,对区域及全球尺度地表通量模拟等研究具有重要意义。基于无人机的涡动相关方法能够实现对地表通量的多时段和多架次观测,成本低廉且观测结果可靠,是机载通量观测技术的一个重要发展方向。在介绍机载涡动相关方法主要技术特点的基础上,综述了现有无人机通量观测系统的研究进展,包括无人机特征及搭载的主要观测仪器类型,典型无人机通量观测系统的集成方式及其观测案例的讨论和分析。然后介绍了影响无人机通量观测的主要不确定性来源,最后对目前无人机通量观测系统的不足进行了总结,并对其发展前景进行了展望。

关键词: 机载涡动相关无人机系统集成通量观测区域尺度    
Abstract:

Airborne Eddy Covariance (EC) method is one of the most effective ways to measure the turbulent fluxes over regional scale directly. The turbulent fluxes from airborne EC method have the same spatial scale with the pixel scale of remote sensing image and the grid scale of land-surface models, which is very important for the simulation of regional or global land-surface fluxes. UAV-based eddy covariance method could achieve the observation of turbulent fluxes in a multi-period and multi-sorties way, and the observation result is reliable and the application is inexpensive. It is an important development direction for airborne flux observation technique. After the introduction of the main technical characteristics of the airborne EC method, this paper reviewed the worldwide progress in UAV-based fluxes measurements system from these aspects of the specifications of the UAVs, the integrated instruments, and the analysis of the application cases. Then, the main sources of uncertainty affecting the UAV-based fluxes measurements were discussed. At last, the shortcomings of the current UAV-based flux observation system were summarized. A brief outlook about UAV-based fluxes measurements technique was also given.

Key words: Airborne Eddy Covariance    UAV    System integration    Fluxes measurements    Regional scale.
收稿日期: 2019-04-21 出版日期: 2019-10-11
ZTFLH:  P231  
基金资助: 国家重点研发计划项目“长三角城市群生态安全评估与风险预测预警技术”(2016YFC0502702);生态环境部生态环境保护监管项目“生物多样性调查与评估”(2019HJ2096001006)
通讯作者: 苏德     E-mail: sunyb68@163.com;sude@craes.org.cn;sunyb68@163.com
作者简介: 孙义博(1988-),男,内蒙古鄂尔多斯人,博士后,主要从事陆面过程观测与建模的研究. E-mail:sunyb68@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙义博
苏德
全占军
商豪律
耿冰
林兴稳
荆平平
包扬
赵艳华
杨巍

引用本文:

孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.

Yibo Sun,De Su,Zhanjun Quan,Haolü Shang,Bing Geng,Xingwen Lin,Pingping Jing,Yang Bao,Yanhua Zhao,Wei Yang. Overview of the UAV—Based Eddy Covariance Fluxes Measurements Technique. Advances in Earth Science, 2019, 34(8): 842-854.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.08.0842        http://www.adearth.ac.cn/CN/Y2019/V34/I8/842

图1  机载涡动相关方法数据处理流程
图2  湍流探头坐标系与地球坐标系转换示意图
图3   SUMO无人机通量观测设备[42]
图4   SUMO观测的三维风速方差与湍流动能的均值与60 m观测塔超声风速计观测结果的对比[43]
型号 最大起飞重量/kg 有效载荷/kg 翼展/m 续航时间/min 巡航速度/(m/s)
Tempest 3.2 2.2 6.8 90 25
M2AV 6.0 1.5 2.0 45 22
MASC 4.0 1.0 2.1 90 22
Skywalker X6 2.5 0.5 1.5 30 16
OVLI-TA 3.5 1.25 2.6 120 16
表1  用于涡动相关观测的中型无人机的主要性能
型号 风速 位置姿态 温度 湿度 压强 其他 观测变量
M2AV 5孔湍流探头 自驾系统(MINC)给出

热电偶

温湿传感器探针(Vaisala,HMP50)

温湿传感器探针(Vaisala,HMP50) 5孔湍流探头 感热、风速、风向、大气温度/湿度、气压
MASC 5孔湍流探头 GPS/IMU (SBG, IG500N)

热电偶

电阻温度计

电容式相对湿度传感器(P14-Rapid,IST) 气压计(HCA-BARO) 感热、风速、风向、相对湿度、气压
Skywalker X6 5孔湍流探头 GPS/INS (Lord Sensing Microstrain 3DM-GX4-45) 铂电阻温度计 电容式相对湿度传感器(P14-Rapid,IST) 气压计(model 15PSI-A-HGRADESMINI, All Sensors) 辐射计(LI-COR LI200R) 感热、风速、风向、相对湿度、气压、辐射
OVLI-TA 5孔湍流探头 GPS,IMU (ADIS16448) 数字温湿传感器(Sensirion, SHT75) 数字温湿传感器(Sensirion, SHT75) 皮托管 风速、风向、大气温度/湿度、气压
表2  中型无人机搭载的涡动相关观测仪器及其他观测设备汇总
图5   M2AV无人机通量观测设备[48]
图6   M2AV观测的温度(a)、湿度(b)和风速(c)廓线与塔、廓线雷达、微波辐射计以及无线电探空仪观测的对比[49]
型号 最大起飞重量/kg 有效载荷/kg 翼展/m 续航时间/min 巡航速度/(m/s)
UMARS2 30.0 10.0 5.0 240 22
Manta 27.7 5.0 2.6 300 23~33
Manta C1 27.7 6.8 2.7 300 23~33
ScanEagle 22.0 5.6 3.11 660 28~31
ALADINA 25.0 3.0 3.6 60 25~28
表3  用于涡动相关通量观测的大型无人机主要性能指标
型号 风速 位置姿态 温度 湿度 压强 其他传感器 主要观测变量
UMARS2 5孔湍流探头 IMU (xsense MTi-G) 热电偶,热敏电阻 露点湿度计 (Meteolabor AG 'Snow White') 5孔湍流探头 感热、风速、风向、相对湿度、大气压强
Manta 5孔湍流探头 GPS/INS (C-Migits-Ⅲ) 电阻式湿度传感器(Honeywell HIH-4602-C)

氪湿度计(Campbell),

电阻式湿度传感器(Honeywell HIH-4602-C)

5孔湍流探头 激光测高仪 潜热、风速、风向、大气温度/湿度、气压
Manta C1 9孔湍流探头 IMU (Honeywell, HG1700 AG58),GPS (NovAtel OEMV-3 RTK-DGPS),NovAtel SPAN circuitry(用于GPS和IMU数据耦合) 光纤温度探针,温湿传感器探针(Vaisala, HMP45C)

氪湿度计(Campbell),

温湿传感器探针(Vaisala, HMP45C)

9孔湍流探头 激光测高仪、辐射传感器、数码相机 感热、潜热、风速、风向、大气温度/湿度、气压、辐射
ScanEagle 9孔湍流探头 IMU (Northrop Grumman, LN200),GPS (NovAtel OEMV-3 RTK-DGPS),NovAtel SPAN circuitry(同于GPS和IMU数据耦合) 光纤温度探针,温湿传感器探针(Vaisala, HMP45C)

氪湿度计(Campbell),

温湿传感器探针(Vaisala,HMP45C)

9孔湍流探头 辐射传感器、数码相机、红外相机、海面温度传感器、激光测高仪 感热、潜热、风速、风向、大气温度/湿度、气压、辐射、海面温度
ALADINA 5孔湍流探头 GPS/IMU (SBG, IG500N) 热电偶,铂电阻温度计,温湿传感器探针(Vaisala, HMP110) 温湿传感器探针(Vaisala,HMP110) 5孔湍流探头 气溶胶测量装置、黑炭测量装置、辐射测量传感器 感热、风速、风向、大气温度/湿度、气压、辐射
表4  大型无人机搭载的主要涡动相关观测仪器及其他观测设备汇总
图7   Manta C1无人机通量观测设备[28]
图8   Manta C1观测的动量通量(a,b)和潜热通量(c)与2套地面涡相关设备(Sonic 1, Sonic 2)观测的对比[28]
类型 5孔湍流探头 5孔湍流探头 9孔湍流探头
制造商 Aeroprobe

Institute of Fluid Dynamics

(TU Braunschweig)

University of California
探头直径/mm 6.35 6 25.4
频率响应(最高)/Hz 100 100 100
搭载的无人机通量观测系统 Manta,SUMO,Tempest,Skywalker X6 M2AV,ALADINA,MASC Manta C1,ScanEagle

典型系统的风速测量精度(考虑

GPS/INS误差)/(m/s)

0.17[26] 0.5[25] 0.021[28]
表5  主要无人机风速测量的多孔机载湍流探头汇总
1 Liu Shaomin , Li Xiaowen , Shi Shengjin , et al . Measurement, analysis and application of surface energy and water vapor fluxes at large scale[J]. Advances in Earth Science,2010, 25(11): 1 113-1 127.
1 刘绍民,李小文,施生锦,等 . 大尺度地表水热通量的观测、分析与应用[J]. 地球科学进展, 2010, 25(11): 1 113-1 127.
2 Bai J , Jia L , Liu S , et al . Characterizing the footprint of eddy covariance system and large aperture scintillometer measurements to validate satellite-based surface fluxes[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 943-947.
3 Ma Y , Menenti M , Feddes R , et al . Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D8).DOI:10.1029/2007JD009124 .
doi: 10.1029/2007JD009124
4 Xu F , Wang W , Wang J , et al . Area-averaged evapotranspiration over a heterogeneous land surface: Aggregation of multi-point EC flux measurements with high-resolution land-cover map and footprint analysis[J]. Hydrology and Earth System Sciences, 2017, 21(8): 4 037-4 051.
5 Sun G , Hu Z , Sun F , et al . An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data[J]. Theoretical and Applied Climatology, 2016, 129(3): 965-976.
6 Cammalleri C , Anderson M C , Kustas W P . Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications[J]. Hydrology and Earth System Sciences, 2014, 18(5): 1 885-1 894.
7 Zhou Yanzhao , Li Xin . Progress in the energy closure of eddy covariance systems[J]. Advance in Earth Sciences,2018, 33(9): 898-913.
7 周彦昭,李新 . 涡动相关能量闭合问题的研究进展[J]. 地球科学进展, 2018, 33(9): 898-913.
8 Li Xin , Jin Rui , Liu Shaomin , et al . Upscaling research in HiWATER: Progress and prospects[J]. Journal of Remote Sensing,2016, 20(5): 921-932.
8 李新,晋锐,刘绍民,等 . 黑河遥感试验中尺度上推研究的进展与前瞻[J]. 遥感学报, 2016, 20(5): 921-932.
9 Li Huaixiang , Liu Shaomin , Shi Shengjin , et al . Assessing the performance of domestic optical large aperture scintillometer under different environment conditions[J]. Plateau Meteorology,2017, 36(2): 575-585.
9 李怀香,刘绍民,施生锦,等 . 国产光学型大孔径闪烁仪的技术性能分析[J]. 高原气象, 2017, 36(2): 575-585.
10 Zhang Gong , Zheng Ning , Zhang Jinsong , et al . Advances in the study of regional-averaged evapotranspiration using the scintillation method[J]. Acta Ecologica Sinica,2018, 38(8): 2 625-2 635.
10 张功,郑宁,张劲松,等 . 光闪烁方法测算区域蒸散研究进展[J]. 生态学报, 2018, 38(8): 2 625-2 635.
11 Zhang Gong , Zhang Jinsong , Meng Ping , et al . Application of two-wavelength bichromatic correlation method to calculate the average surface energy and water vapor fluxes in plantation North China[J]. Chinese Journal of Agrometeorology,2018, 39(6): 380-389.
11 张功,张劲松,孟平,等 . 双波长交互法测算华北人工林平均水热通量的应用分析[J]. 中国农业气象, 2018, 39(6): 380-389.
12 Liu S , Xu Z , Song L , et al . Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces[J]. Agricultural and Forest Meteorology, 2016, 230/231: 97-113.
13 Gioli B , Miglietta F , Martino B D , et al . Comparison between tower and aircraft-based eddy covariance fluxes in five European regions[J]. Agricultural and Forest Meteorology, 2004, 127(1/2): 1-16.
14 Vellinga O S , Gioli B , Elbers J A , et al . Regional carbon dioxide and energy fluxes from airborne observations using flight-path segmentation based on landscape characteristics[J]. Biogeosciences, 2010, 7(4): 1 307-1 321.
15 Kral T S , Reuder J , Vihma T , et al . Innovative strategies for observations in the Arctic atmospheric boundary layer (ISOBAR)—The Hailuoto 2017 campaign[J]. Atmosphere, 2018, 9(7):268.
16 Jacob D J , Chilson B P , Houston L A , et al . Considerations for Atmospheric Measurements with Small Unmanned Aircraft Systems[J]. Atmosphere, 2018, 9(7):268.
17 Witte B M , Mullen J , Thamann M A , et al . Fundamental turbulence measurement with unmanned aerial vehicles (invited)[C]//8th AIAA Atmospheric and Space Environments Conference. Washington DC, 2016.
18 Elston J , Argrow B , Stachura M , et al . Overview of Small Fixed-Wing Unmanned Aircraft for Meteorological Sampling[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(1): 97-115.
19 Bean B R , Gilmer R , Grossman R L , et al . An analysis of airborne measurements of vertical water vapor flux during BOMEX[J]. Journal of the Atmospheric Sciences, 1972, 29(5): 860-869.
20 Bean B R , Reinking R F . Marine turbulent boundary layer fluxes of water vapor, sensible heat and momentum during gate[M] //Turbulent Fluxes Through the Sea Surface, Dynamics Wave , and Prediction . Boston, MA: Springer US, 1978: 21-33.
21 Desjardins R L , Brach E J , Alvo P , et al . Aircraft monitoring of surface carbon dioxide exchange[J]. Science, 1982, 216 (4 547): 733-735.
22 Gioli B , Miglietta F , Vaccari F P , et al . The Sky Arrow ERA, an innovative airborne platform to monitor mass, momentum and energy exchange of ecosystems[J]. Annals of Geophysics, 2006, 49: 109-116.
23 Desjardins R L , Worth D E , MacPherson J I , et al . Flux measurements by the NRC Twin Otter atmospheric research aircraft: 1987-2011[J]. Advances in Science and Research, 2016(13): 43-49.
24 Daida J M , Russell P B , Crawford T L , et al . An unmanned aircraft vehicle system for boundary-layer flux measurements over forest canopies[C]//Proceedings of IGARSS ' 9 -1994 IEEE International Geoscience and Remote Sensing Symposium.
24 Pasadena, CA, USA , 1994.
25 van den Kroonenberg A , Martin T , Buschmann M , et al . Measuring the wind vector using the autonomous mini aerial vehicle M2AV[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(11): 1 969-1 982.
26 Thomas R M , Lehmann K , Nguyen H , et al . Measurement of turbulent water vapor fluxes using a lightweight unmanned aerial vehicle system[J]. Atmospheric Measurement Techniques, 2012, (5): 243-257.
27 Reineman B D , Lenain L , Statom N M , et al . Development and testing of instrumentation for UAV-Based flux measurements within terrestrial and marine atmospheric boundary layers[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(7): 1 295-1 319.
28 Anderson K , Gaston K J . Lightweight unmanned aerial vehicles will revolutionize spatial ecology[J]. Frontiers in Ecology and the Environment, 2013, 11(3): 138-146.
29 Reuder J , B?serud L , Jonassen M O , et al . Exploring the potential of the RPA system SUMO for multipurpose boundary-layer missions during the BLLAST campaign[J]. Atmospheric Measurement Techniques, 2016, 9(6): 2 675-2 688.
30 Thomas R M , Lehmann K , Nguyen H , et al . Measurement of turbulent water vapor fluxes using a lightweight unmanned aerial vehicle system[J]. Atmospheric Measurement Techniques, 2012, 5: 243-257.
31 Lothon M , Lohou F , Pino D , et al . The BLLAST field experiment: Boundary-Layer late afternoon and sunset turbulence[J]. Atmospheric Chemistry and Physics, 2014, 14(20): 10 931-10 960.
32 Ramanathan V , Ramana M V , Roberts G , et al . Warming trends in Asia amplified by brown cloud solar absorption[J]. Nature, 2007, 448: 575-578.
33 Sun Yibo . Study of Airborne Eddy Covariance Regional Turbulent Water and Heat Fluxes Measurements Methods [D]. Beijing: Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, 2018.
33 孙义博 . 机载涡动相关区域湍流水热通量观测方法研究[D]. 北京: 中国科学院大学, 2018.
34 Vellinga O S , Dobosy R J , Dumas E J , et al . Calibration and quality assurance of flux observations from a small research aircraft[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(2): 161-181.
35 Alaoui-Sosse S , Durand P , Medina P , et al . OVLI-TA: An Unmanned Aerial System for measuring profiles and Turbulence in the Atmospheric Boundary Layer[J]. Sensors, 2019, 19(3): 581.
36 Rautenberg A , Graf S M , Wildmann N , et al . Reviewing wind measurement approaches for fixed-wing unmanned aircraft[J]. Atmosphere, 2018, 9(11):422.
37 Rautenberg A , Allgeier J , Jung S , et al . Calibration procedure and accuracy of wind and turbulence measurements with five-hole probes on fixed-wing unmanned aircraft in the atmospheric boundary layer and wind turbine wakes[J]. Atmosphere, 2019, 10(3):124.
38 Calmer R , Roberts G C , Preissler J , et al . Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions[J]. Atmospheric Measurement Techniques, 2018, 11(5): 2 583-2 599.
39 Drüe C , Heinemann G . A review and practical guide to in-flight calibration for aircraft turbulence sensors[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(12): 2 820-2 837.
40 Crawford T L , Mcmillen R T , Dobosy R J , et al . Correcting airborne flux measurements for aircraft speed variation[J]. Boundary-Layer Meteorology, 1993, 66(3): 237-245.
41 Mayer S , Jonassen M O , Sandvik A , et al . Profiling the Arctic stable boundary layer in advent valley, Svalbard: Measurements and simulations[J]. Boundary-Layer Meteorology, 2012, 143(3): 507-526.
42 Reuder J , Jonassen M O , ólafsson H . The small unmanned meteorological observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research[J]. Acta Geophysica, 2012, 60(5): 1 454-1 473.
43 B?serud L , Reuder J , Jonassen M O , et al . Proof of concept for turbulence measurements with the RPAS SUMO during the BLLAST campaign[J]. Atmospheric Measurement Techniques, 2016, 9(10): 1-22.
44 B?serud L , Flügge M , Bhandari A , et al . Characterization of the SUMO turbulence measurement system for wind turbine wake assessment[J]. Energy Procedia, 2014, 53: 173-183.
45 Subramanian B , Chokani N , Abhari R S . Drone-based experimental investigation of three-dimensional flow structure of a multi-megawatt wind turbine in complex terrain[J]. Journal of Solar Energy Engineering, 2015, 137(5): 51 007.
46 Frew E W , Elston J , Argrow B , et al . Sampling severe local storms and related phenomena: Using unmanned aircraft systems[J]. IEEE Robotics & Automation Magazine, 2012, 19(1): 85-95.
47 Wildmann N , Hofs?? M , Weimer F , et al . MASC — A small Remotely Piloted Aircraft (RPA) for wind energy research[J]. Advances in Science and Research, 2014, 11(1): 55-61.
48 Spiess T , Bange J , Buschmann M , et al . First application of the meteorological Mini-UAV 'M2AV'[J]. Meteorologische Zeitschrift, 2007, 16(2): 159-169.
49 Martin S , Bange J , Beyrich F . Meteorological profiling of the lower troposphere using the research UAV “M2AV Carolo”[J]. Atmospheric Measurement Techniques, 2011, (4): 705-716.
50 Lampert A , P?tzold F , Jiménez M A , et al . A study of local turbulence and anisotropy during the afternoon and evening transition with an unmanned aerial system and mesoscale simulation[J]. Atmospheric and Chemistry and Physics, 2016, 16(12): 8 009-8 021.
51 Martin S , Beyrich F , Bange J . Observing entrainment processes using a small unmanned aerial vehicle: A feasibility study[J]. Boundary-Layer Meteorology, 2014, 150(3): 449-467.
52 Hesselbarth H , Neininger B . UAV-platform UMARS2 for environmental research[C]//First Conference for Atmospheric Research Using Remotely-Piloted Aircraft. Palma de Mallorca,Balearic Islands, Spain, 2013.
53 Reineman B D , Lenain L , Melville W K . The use of ship-launched fixed-wing UAVs for measuring the marine atmospheric boundary layer and ocean surface processes[J]. Journal of Atmospheric and Oceanic Technology, 2016, 33(9): 2 029-2 052.
54 Altst?dter B , Platis A , Wehner B , et al . ALADINA — An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer[J]. Atmospheric Measurement Techniques, 2015,(8): 1 627-1 639.
55 B?rfuss K , P?tzold F , Altst?dter B , et al . New setup of the UAS ALADINA for measuring boundary layer properties, Atmospheric particles and solar radiation[J]. Atmosphere, 2018, 9(1):28.
56 Metzger S , Junkermann W , Butterbach-Bahl K , et al . Measuring the 3-D wind vector with a weight-shift microlight aircraft[J]. Atmospheric Measurement Techniques, 2011, 4(7): 1 421-1 444.
57 Wildmann N , Ravi S , Bange J . Towards higher accuracy and better frequency response with standard multi-hole probes in turbulence measurement with Remotely Piloted Aircraft (RPA)[J]. Atmospheric Measurement Techniques, 2014, 6(6): 9 783-9 818.
58 Garman K E , Hill K A , Wyss P , et al . An airborne and wind tunnel evaluation of a wind turbulence measurement system for aircraft-based flux measurements[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23: 1 696-1 708.
59 Sun Y , Jia L , Chen Q , et al . Optimizing window length for turbulent heat flux calculations from airborne eddy covariance measurements under near neutral to unstable atmospheric stability conditions[J]. Remote Sensing, 2018, 5(10): 670.
60 Sun J , Howell J F , Esbensen S K , et al . Scale dependence of air-sea fluxes over the western equatorial Pacific[J]. Journal of the Atmospheric Sciences, 1996, 53(21):2 997-3 012.
61 Mahrt L , Macpherson J I , Desjardins R . Observations of fluxes over heterogeneous surfaces[J]. Boundary-Layer Meteorology, 1994, 4(67): 345-367.
62 Mahrt L . Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2): 416-429.
63 Witte M B , Singler F R , Bailey C S . Development of an unmanned Aerial vehicle for the measurement of turbulence in the atmospheric boundary layer[J]. Atmosphere, 2017, 8(10): 195.
64 Finkelstein P L , Sims P F . Sampling error in eddy correlation flux measurements[J]. Journal of Geophysical Research, 2001, 106(D4): 3 503-3 509.
65 Aubinet M . Eddy covariance CO2 flux measurements in nocturnal conditions: an analysis of the problem[J]. Ecological Applications, 2008, 18(6): 1 368-1 378.
66 Mitic C M , Schuepp P H , Desjardins R L , et al . Flux association in coherent structures transporting CO2, H2O, heat and ozone over the code grid site[J]. Agricultural and Forest Meteorology, 1997, 87(1): 27-39.
[1] 彭大雷, 许强, 董秀军, 巨袁臻, 亓星, 陶叶青. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.
[2] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
[3] 白龙, 路紫, 杜欣儒, 郜方. 城市区域(超)低空空域无人机活动通道划设规则与方法[J]. 地球科学进展, 2016, 31(11): 1197-1204.
[4] 张良侠, 胡中民, 樊江文, 邵全琴, 唐风沛. 区域尺度生态系统水分利用效率的时空变异特征研究进展[J]. 地球科学进展, 2014, 29(6): 691-699.
[5] 何洪林,张黎, 黎建辉, 周园春,任小丽,于贵瑞. 中国陆地生态系统碳收支集成研究的e-Science 系统构建[J]. 地球科学进展, 2012, 27(2): 246-254.
[6] 施生锦,黄彬香,刘绍民,杨燕,黄勇彬,徐自为. 大尺度水热通量观测系统的研制[J]. 地球科学进展, 2010, 25(11): 1128-1138.
[7] 蔡旭晖,朱明佳,刘绍民,徐自为. 大孔径闪烁仪的通量印痕分析与应用[J]. 地球科学进展, 2010, 25(11): 1166-1174.
[8] 李杨,马舒庆,王国荣,孙兆滨. 无人机探测“海鸥”台风中心附近的资料初步分析[J]. 地球科学进展, 2009, 24(6): 675-679.
[9] 孙波,潘贤章,王德建,韩晓增,张玉铭,郝明德,陈欣. 我国不同区域农田养分平衡对土壤肥力时空演变的影响[J]. 地球科学进展, 2008, 23(11): 1201-1208.
[10] 邵景安,李阳兵,魏朝富,谢德体. 区域土地利用变化驱动力研究前景展望[J]. 地球科学进展, 2007, 22(8): 798-809.
[11] 胡隐樵,张强. 大气边界层相似性理论及其应用[J]. 地球科学进展, 1996, 11(6): 550-554.