地球科学进展 ›› 2019, Vol. 34 ›› Issue (4): 424 -432. doi: 10.11867/j.issn.1001-8166.2019.04.0424

地球化学 上一篇    下一篇

基于光纤传感的多参量地震综合观测技术研究
黄稳柱 1, 2( ),张文涛 1, 2,李芳 1, 2   
  1. 1. 中国科学院半导体研究所传感技术国家重点实验室,北京 100083
    2. 中国科学院大学材料科学与光电子技术学院,北京 100049
  • 收稿日期:2018-11-05 修回日期:2019-01-12 出版日期:2019-04-10
  • 基金资助:
    国家重点研发计划项目“先进光纤传感材料与器件关键技术及应用”(编号:2017YFB0405500);国家自然科学基金项目“基于频率分裂与偏振效应的超高分辨率光纤光栅静态应变检测关键技术研究”(编号:61605196)

Study on Multi-Parameter Seismic Observation Technique Based on Optic Fiber Sensing

Wenzhu Huang 1, 2( ),Wentao Zhang 1, 2,Fang Li 1, 2   

  1. 1. State Key Laboratory of Transducer Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
    2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-11-05 Revised:2019-01-12 Online:2019-04-10 Published:2019-05-27
  • About author: Huang Wenzhu (1987-), male, Jiujiang City, Jiangxi Province, Ph.D student. Research areas include optic fiber sensing.| Huang Wenzhu (1987-), male, Jiujiang City, Jiangxi Province, Ph.D student. Research areas include optic fiber sensing.
  • Supported by:
    Project supported by the National Key R & D Program of China "Key technologies and applications of advanced optical fiber sensing materials and devices"(No. 2017YFB0405500);The National Natural Science Foundation of China "Research on key technologies for ultra-high-resolution fiber Bragg grating static strain measurement based on freuquency division character and polarization effect"(No.61605196)

面向地震综合观测需要,自主研制了窄线宽光纤光栅谐振腔,并将其作为核心传感元件,发展了一种基于有效腔长的光纤应变、地震波和温度多参量同步测量新方法。采用边带扫频激光技术实现了高精度多参量光纤信号同步解调,研制出了光纤地壳形变、地震与温度多参量探头,并开展了多参量地震综合观测实验。实验结果表明,所研制的光纤多参量传感系统应变与温度测量分辨率分别达到4.7×10-10和6 × 10-5 ℃,能够同时记录到清晰的固体潮汐信号、地震波信号以及环境温度扰动,有望为多参量地震同步观测提供先进的技术手段。

”Deep well, wide band, multi-component comprehensive observation” is the development direction of seismic observation. In order to promote the application and development of underground integrated observation system, key technologies, such as high temperature resistance sensor, interference isolation of sensor unit and miniaturization of instrument, need to be developed. Optic fiber sensors have the advantages of small size, passive nature, resistance to electromagnetic interference, being easy to long distance transmission and multi-parametric network observation, which are expected to provide new technology for the comprehensive observation of multi-parameter earthquakes in deep wells. This paper proposed a comprehensive observation technique of seismic wave, crustal deformation and temperature. An integrated borehole seismic sensor based on fiber Bragg grating resonators was designed for measuring three-component earthquake, three-component crustal deformation and temperature signal. A new technique for simultaneous measurement of multi-parameters of temperature and strain of fiber based on effective cavity length was presented. The technique of high precision optical fiber signal demodulation based on single side band sweep laser and the design of multi-parameter integrated optical fiber probe were introduced. The resolution of strain and temperature measurement of the fiber multi-parameter sensor system reached 4.7 × 10-10 and 6×10-5 , respectively. A comprehensive multi-parameter earthquake observation experiment was carried out at the seismic station. The results show that the integrated optical fiber multi-parameter seismic observation system can simultaneously record the earth tide signal, seismic wave signal and environmental temperature disturbance, and has good anti-environmental interference ability and long-term stability, which is expected to provide a new technique for crustal deformation observation.

中图分类号: 

图1 光纤光栅谐振腔结构原理(a)、反射光谱(b)以及一个自由谱范围内的谐振峰图(c
Fig.1 The structure principle of FBG-FP resonator (a), the picture of reflectance spectra (b) and the picture of the resonant peaks within a free spectrum rangec
图2 高精度光纤光栅多参量信号解调技术方案
Fig.2 The technical scheme for high-resolution FBG multi-parameter signal interrogation
图3 应变传感光栅、温度传感光栅的时域本底噪声以及应变光栅温度补偿后的时域本底噪声
Fig.3 The time-domain noise of strain sensing FBG, temperature sensing FBG and the time-domain noise of the strain sensing FBG after temperatue compensation
图4 光纤多参量地震综合观测探头结构原理(a)与实物图(b
Fig.4 The structure principle (a) and the picture (b) of the multi-parameter FBG integrated earthquake observation probe
图5 光纤光栅谐振腔地震计结构示意图
Fig.5 The structure diagram of FBG-FP seismometer
图6 光纤光栅形变传感器固体潮和地震观测实验方案
Fig.6 The experimental scheme for Earth tide and earthquake observation based on FBG deformation sensor
图7 三分量光纤形变传感器记录到的固体潮信号与地震事件
Fig.7 The tide signals and seismic event recorded by the three-component optic fiber deformation sensor
图8 三分量光纤地震计记录到的印尼龙目岛6.5级地震信号
Fig.8 The M6.5 earthquake signals recorded by the three-component optic fiber seismometer
图9 光纤温度传感器记录到的温度变化曲线
Fig.9 The temperature curve recorded by the optil fiber temperature sensor
1 Dong Yunkai , Li Hong . Current situation of borehole multi-component observation technology[J]. Technology for Earthquake Disaster Prevention, 2014, 9(1):149-158.
董云开, 李宏 . 井下综合观测技术发展现状[J]. 震灾防御技术, 2014, 9(1): 149-158.
2 Lin Jian , Xu Min , Zhou Zhiyuan , et al . Ocean drilling investigation of the global subduction processes[J]. Advances in Earth Science, 2017, 32(12):1 253-1 266.
林间, 徐敏, 周志远,等 . 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12):1 253-1 266.
3 Mao Jinglun , Zhu Yiqing . Progress in the application of ground gravity observation data in earthquake prediction[J]. Advances in Earth Science, 2018, 33(3): 236-247.
毛经纶,祝意青 . 地面重力观察数据在地震预测中的应用研究与进展[J]. 地球科学进展, 2018, 33(3): 236-247.
4 Ouyang Zuxi . U. S. PBO Project: Borehole strainmeter networks face a challenge[J]. Recent Developments in Word Seismology, 2011, (10): 19-28.
欧阳祖熙 . 美国PBO计划:钻孔应变仪台网遭遇挑战[J]. 国际地震动态, 2011, (10):19-28.
5 Mark Z , Stephen H , William E , al et , Scientific drilling into the San Andreas Fault Zone—An overview of SAFOD’s first years [J]. Scientific Drilling, 2011, 11: 14-28.
6 Yasuhiro A , Hiroshi I , Harumi A . Comparison of tidal strain changes observed at the borehole array observation system with in situ rock properties in the Tono region, central Japan[J]. Journal of Geodynamics, 2009, 48: 292-298.
7 Ouyang Zuxi , Zhang Jun , Chen Zheng , et al . New progress in multi-component observation of crustal deformation in deep boreholes[J]. Recent Developments in Word Seismology, 2009, (11): 1-13.
欧阳祖熙,张钧,陈征,等 . 地壳形变深井综合观测技术的新进展[J]. 国际地震动态, 2009, (11): 1-13.
8 Li Hailiang , Li Hong . Status and developments of borehole strain observations in China[J]. Acta Geologica Sinica, 2010, 84(6): 895-900.
李海亮, 李宏 . 钻孔应变观测现状与展望[J]. 地质学报, 2010, 84(6): 895-900.
9 Liu Wenyi , Zhang Wentao , Li Li ,et al . Optical fiber sensor technology: Future direction for earthquake precursor monitoring[J]. Earthquake, 2012, 32(4): 92-102.
刘文义, 张文涛, 李丽,等 . 光纤传感技术——未来地震监测的发展方向[J].地震, 2012, 32(4): 92-102.
10 Gagliardi G , Salza M , Avino S , et al . Probing the ultimate limit of fiber-optic strain sensing[J]. Science, 2010, 330(6 007): 1 081.
11 Giuseppe M , Cecilia C , Richard L , et al . Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables[J]. Science, 2018, 36(6 401):486-490.
12 Mark Z , Jonathan B , Jose O , et al . An optical seismometer without force feedback[J]. Bulletin of the Seismological Society of America, 2010, 100(2): 598-605.
13 Kazuhiko F I , Toshiro A , Masaru O , et al . Development of seafloor seismic and tsunami observation system[C]//2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. IEEE, 2007: 349-355.
14 Gagliardi G , Maddaloni P , Malara P , et al . Ultra-high sensitivity frequency-comb-referenced multi-parametric sensors based on 1-D photonic components[C]// Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications II. International Society for Optics and Photonics, 2008, 7 056: 70560I.
15 Zhang Wentao , Huang Wenzhu , Li Fang . High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering[J]. Opto-Electronic Engineering, 2018, 45(9): 170 615.
张文涛, 黄稳柱, 李芳 . 高精度光纤光栅传感技术及其在地球物理勘探、地震观测和海洋领域中的应用[J]. 光电工程, 2018, 45(9): 170 615.
16 He Zuyuan , Liu Qingwen , Chen Jiageng . Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation[J]. Acta Physica Sinica, 2017, 66(7):074208-1-074208-12.
何祖源,刘庆文,陈嘉庚 . 面向地壳形变观测的超高分辨率光纤应变传感系统[J]. 物理学报, 2017, 66(7): 074208-1-074208-12.
17 Wu Bing , Yang Jun , Yuan Yonggui , et al . Online stability monitoring technology of long-baseline homodyne laser interferometer[J]. Chinese Journal of Laser, 2012, 39(6):178-183.
吴冰,杨军,苑勇贵,等 .单频长基线激光干涉仪的在线稳定性监测方法[J].中国激光, 2012, 39(6):178-183.
18 Chen J , Chang T , Yang Y , et al . Ultra-low-frequency tri-component fiber optic interferometric accelerometer[J]. IEEE Sensors Journal, 2018, 18(20): 8 367-8 374.
19 Barmenkov Y O . Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings[J]. Optics Express, 2006, 14(14): 6 394-6 399.
20 Huang Wenzhu , Zhang Wentao , Li Fang . Swept optical SSB-SC modulation technique for high-resolution large dynamic range static strain measurement using FBG-FP sensors[J]. Optics Letters, 2015, 40(7): 1 406-1 409.
21 Zhang Wentao , Huang Wenzhu , Luo Yingbo , et al . High resolution fiber optic seismometer[J]. Chinese Journal of Sensors and Actuators, 2017, 30(4): 864-866.
张文涛, 黄稳柱, 罗英波,等 . 高精度光纤光栅地震计[J]. 传感技术学报, 2017, 30(4): 864-866.
22 Huang Wenzhu , Zhang Wentao , Luo Yingbo , et al . Broadband FBG resonator seismometer: Principle, key technique, self-noise, and seismic response analysis[J]. Optics Express, 2018, 26(8):10 705-1 0715.
[1] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[2] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[3] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[4] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[5] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[6] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[7] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[8] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[9] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[10] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[11] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[12] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[13] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[14] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[15] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
阅读次数
全文


摘要