地球科学进展 ›› 2018, Vol. 33 ›› Issue (3): 305 -320. doi: 10.11867/j.issn.1001-8166.2018.03.0305

研究简报 上一篇    下一篇

库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究
冯佳睿( ), 高志勇, 崔京钢, 周川闽   
  1. 1.中国石油勘探开发研究院石油地质实验研究中心,北京 100083;2.中国石油天然气集团公司油气储层重点实验室,北京 100083
  • 收稿日期:2017-09-05 修回日期:2018-02-02 出版日期:2018-03-20
  • 基金资助:
    *国家科技重大专项项目“前陆冲断带及复杂构造区地质演化过程、深层结构与储层特征”(编号:2016ZX05003-001)资助.

Reservoir Porosity Evolution Characteristics and Evaluation of the Jurassic Deep Reservoir from Dibei in Kuqa Depression: Insight from Diagenesis Modeling Experiments Under the Influence of Burial Mode

Jiarui Feng( ), Zhiyong Gao, Jinggang Cui, Chuanmin Zhou   

  1. 1.Research Institute of Petroleum Exploration & Development, Petroleum Geology Research and Laboratory Center, Beijing 100083, China;2.Key Laboratory of Oil and Gas Reservoirs, China National Petroleum Corporation, Beijing 100083, China
  • Received:2017-09-05 Revised:2018-02-02 Online:2018-03-20 Published:2018-05-02
  • About author:

    First author:Feng Jiarui(1982-), female, Zhangjiakou City, Hebei Province,Engineer. Research areas include sedimentary reservoir.E-mail:jrfeng2016@163.com

  • Supported by:
    Project supported by the National Science and Technology Major Project “The geological evolution process, deep structure and reservoir characteristics in foreland thrust belt and complex structural area”(No.2016ZX05003-001).

利用自主研发的成岩物理模拟系统,对库车坳陷迪北侏罗系粗砂岩储层在特有的埋藏方式下,即沉积早期长期浅埋、后期快速深埋、晚期构造抬升影响下的成岩演化过程开展成岩物理模拟实验。研究表明:随着模拟的温度、压力、埋深的逐渐增大和压实作用的持续加强,石英、长石等脆性颗粒出现裂纹,长石更易形成次生溶蚀;粗砂岩成岩样品的孔隙、孔喉和成岩流体中K,Na,Ca,Al,Si,Ti和Mn等主要阳离子均呈现一定的变化规律;自生矿物和黏土矿物发育,如方解石、石英、自生I/S混层和绿泥石等较常见。快速深埋藏阶段3 000~6 500 m,溶蚀作用强烈,孔径和喉径均达到最大值,方解石胶结和石英加大发育。构造抬升阶段5 000~4 500 m,在降温卸压作用影响下,砂岩孔隙回弹,油气充注的酸性水使长石和岩屑等强烈溶蚀。实验表明,深部溶蚀作用、早期长期浅埋、后期快速深埋、晚期构造抬升的埋藏方式和构造作用引起的侧向挤压、裂缝等因素,是我国西部挤压型油气盆地中深部优质储层形成的重要条件。

In this study, using an independently developed diagenetic physical modeling system, we conducted a series of diagenesis physical modeling experiments to simulate reservoir physical property of the Jurassic coarse sandstone from Dibei in Kuqa depression. These experiments reproduced the geological process of early, long-term, shallow burial and subsequent rapid, deep burial, and late tectonic uplift. As the gradual increasing of the simulated temperature, pressure, depth and the continuous strengthening of the compaction, intragranular irregular cracks appeared in quartz, and secondary dissolution could be more easily discovered in feldspar; Porosity, pore throat and K, Na, Ca, Al, Si, Ti, Mn in diagenetic fluid all showed significant evolution and regularity; Calcite, quartz, I/S mixed layer and chlorite were commonly found in modeling samples. At the depth of 3 000~6 500 m, accompanied by strong dissolution, pore diameter and throat diameter reached the maximum, and calcite cementation and quartz overgrowth also increased quickly. At the tectonic uplift stage of 5 000~4 500 m, under the influence of temperature and pressure relief, sandstone porosity began to rebound, and feldspar and rock debris were obviously dissolved under the acidic water from hydrocarbon charging. The formation of effective reservoirs in Western China’s oil and gas basins can be deeply influenced by the factors of dissolution, the process of early, long-term, shallow burial and subsequent rapid, deep burial, and late tectonic uplift, lateral extrusion and cracks induced by tectonic action.

中图分类号: 

图1 成岩物理模拟系统照片
Fig.1 Photos of diagenetic physical simulation system
图1 成岩物理模拟系统照片
Fig.1 Photos of diagenetic physical simulation system
表1 库车迪北侏罗系粗砂岩碎屑组分配比
Table 1 Detrital components of the Jurassic coarse sandstone from Dibei in Kuqa depression
表1 库车迪北侏罗系粗砂岩碎屑组分配比
Table 1 Detrital components of the Jurassic coarse sandstone from Dibei in Kuqa depression
图2 砂岩和泥岩样品照片
Fig.2 Photos of the sandstone and mudstone samples
图2 砂岩和泥岩样品照片
Fig.2 Photos of the sandstone and mudstone samples
图3 库车坳陷迪北中新生代埋藏演化史 [ 51 ]
Fig.3 Meso-Cenozoic burial history from Dibei in Kuqa depression [ 51 ]
图3 库车坳陷迪北中新生代埋藏演化史 [ 51 ]
Fig.3 Meso-Cenozoic burial history from Dibei in Kuqa depression [ 51 ]
表2 有机质热模拟实验中加热时间、加热温度及有机质地质成熟时间关系对比表
Table 2 Comparison of heating time, heating temperature and organic matter maturity time in the heat simulation experiment of organic matter
表2 有机质热模拟实验中加热时间、加热温度及有机质地质成熟时间关系对比表
Table 2 Comparison of heating time, heating temperature and organic matter maturity time in the heat simulation experiment of organic matter
表3 成岩物理模拟实验温度和压力参数表
Table 3 Temperature and pressure parameters for diagenetic physical modeling experiments
表3 成岩物理模拟实验温度和压力参数表
Table 3 Temperature and pressure parameters for diagenetic physical modeling experiments
图4 库车迪北侏罗系粗砂岩成岩物理模拟实验成型效果图
Fig.4 Molding sample photos of the Jurassic coarse sandstone from Dibei in Kuqa depression
6:375 ℃,165 MPa;5:400 ℃,192.5 MPa;4:412.5 ℃,206.25 MPa;3:425 ℃,220 MPa;2:400 ℃,192.5 MPa;1:387.5 ℃,178.75 MPa
图4 库车迪北侏罗系粗砂岩成岩物理模拟实验成型效果图
Fig.4 Molding sample photos of the Jurassic coarse sandstone from Dibei in Kuqa depression
6:375 ℃,165 MPa;5:400 ℃,192.5 MPa;4:412.5 ℃,206.25 MPa;3:425 ℃,220 MPa;2:400 ℃,192.5 MPa;1:387.5 ℃,178.75 MPa
图5 石英和长石颗粒压裂现象的扫描电镜照片
SEM HV:扫描电压;SEM MAG:放大倍数;WD: 工作距离;Det (探头):BSE Detector背散射探头;Name:样品照片编号;Digital Microscopy Imaging:数字显微成像
Fig.5 SEM photos of the quartz and feldspar fracturing
SEM HV:Scanning voltage; SEM MAG:Magnification; WD:Working distance; BSE Detector: Backscatter Detector; Name:Sample number
图5 石英和长石颗粒压裂现象的扫描电镜照片
SEM HV:扫描电压;SEM MAG:放大倍数;WD: 工作距离;Det (探头):BSE Detector背散射探头;Name:样品照片编号;Digital Microscopy Imaging:数字显微成像
Fig.5 SEM photos of the quartz and feldspar fracturing
SEM HV:Scanning voltage; SEM MAG:Magnification; WD:Working distance; BSE Detector: Backscatter Detector; Name:Sample number
图6 依南4井碎屑颗粒定向裂缝的铸体薄片特征
(a)依南4井,4 560.33 m,20(-);(b)依南4井,4 575.64 m,40(-)
Fig.6 Microscopic characteristics of clastic particle fractures from Yi’nan 4 Well
(a)Yi’nan 4 Well, 4 560.33 m, 20(-); (b) Yi’nan 4 Well, 4 575.64 m, 40(-)
图6 依南4井碎屑颗粒定向裂缝的铸体薄片特征
(a)依南4井,4 560.33 m,20(-);(b)依南4井,4 575.64 m,40(-)
Fig.6 Microscopic characteristics of clastic particle fractures from Yi’nan 4 Well
(a)Yi’nan 4 Well, 4 560.33 m, 20(-); (b) Yi’nan 4 Well, 4 575.64 m, 40(-)
图7 长石溶蚀作用的铸体薄片图像
(a)长石溶蚀从边缘向中心扩散,钾长石破裂后被溶蚀,100(-);(b)斜长石溶蚀沿解理缝方向扩展,100(-);(c)长石溶蚀残余,40(-);(d)溶蚀扩大孔,100(-)
Fig.7 Casting thin sections of feldspar dissolution
(a) Feldspar dissolution from edge to center and ruptured potassium feldspar dissolution, 100(-);(b) Plagioclase dissolution along cleavage,100(-); (c)Residual feldspar dissolution, 40(-); (d) Mold holes, 100(-)
图7 长石溶蚀作用的铸体薄片图像
(a)长石溶蚀从边缘向中心扩散,钾长石破裂后被溶蚀,100(-);(b)斜长石溶蚀沿解理缝方向扩展,100(-);(c)长石溶蚀残余,40(-);(d)溶蚀扩大孔,100(-)
Fig.7 Casting thin sections of feldspar dissolution
(a) Feldspar dissolution from edge to center and ruptured potassium feldspar dissolution, 100(-);(b) Plagioclase dissolution along cleavage,100(-); (c)Residual feldspar dissolution, 40(-); (d) Mold holes, 100(-)
图8 成岩物理模拟实验粗砂岩成岩样品孔隙变化曲线图
Fig.8 Porosity evolution diagram of the modeling sandstone samples
图8 成岩物理模拟实验粗砂岩成岩样品孔隙变化曲线图
Fig.8 Porosity evolution diagram of the modeling sandstone samples
图9 成岩物理模拟实验粗砂岩成岩样品孔径与喉径演化曲线图
Fig.9 Pore diameter and throat diameter evolution profiles of the coarse sandstone samples from diagenetic physical modeling
图9 成岩物理模拟实验粗砂岩成岩样品孔径与喉径演化曲线图
Fig.9 Pore diameter and throat diameter evolution profiles of the coarse sandstone samples from diagenetic physical modeling
图10 成岩流体中主要阳离子含量随埋深变化曲线
Fig.10 Main cationic content evolution profiles of diagenetic fluid changing with depth
图10 成岩流体中主要阳离子含量随埋深变化曲线
Fig.10 Main cationic content evolution profiles of diagenetic fluid changing with depth
表4 库车迪北粗砂岩成岩物理模拟实验孔隙分析数据
Table 4 Pore analysis data of the coarse sandstone samples from Dibei in Kuqa depression
表4 库车迪北粗砂岩成岩物理模拟实验孔隙分析数据
Table 4 Pore analysis data of the coarse sandstone samples from Dibei in Kuqa depression
表5 库车迪北侏罗系粗砂岩样品孔喉、孔径变化分析结果
Table 5 Pore diameter and throat diameter data of the coarse sandstone samples from Dibei in Kuqa depression
表5 库车迪北侏罗系粗砂岩样品孔喉、孔径变化分析结果
Table 5 Pore diameter and throat diameter data of the coarse sandstone samples from Dibei in Kuqa depression
图11 砂岩中自生矿物扫描电镜照片
(a)石膏(4 600倍),400 ℃,192.5 MPa,5 000 m;(b) 奥长石(2 600倍),412.5 ℃,206.25 MPa,5 500 m;(c) 钠长石(5 110倍),412.5 ℃, 206.25 MPa,5 500 m;(d) 方解石(4 510倍),387.5 ℃,178.5 MPa,4 500 m;(e) 方解石(1 530倍),412.5 ℃,206.25 MPa,5 500 m; (f) 石英(15 340倍),437.5 ℃,233.75 MPa,6 500 m
Fig.11 SEM photos of the authigenic minerals in sandstone
(a)Gypsum (×4 600), 400 ℃, 192.5 MPa, 5 000 m; (b)Oligoclase (×2 600), 412.5 ℃, 206.25 MPa, 5 500 m;(c)Albite(×5 110),412.5 ℃, 206.25 MPa, 5 500 m; (d)Calcite (×4 510), 387.5 ℃, 178.5 MPa, 4 500 m;(e) Calcite(×1 530),412.5 ℃, 206.25 MPa, 5 500 m; (f) Quartz (×15 340),437.5 ℃, 233.75 MPa, 6 500 m
图11 砂岩中自生矿物扫描电镜照片
(a)石膏(4 600倍),400 ℃,192.5 MPa,5 000 m;(b) 奥长石(2 600倍),412.5 ℃,206.25 MPa,5 500 m;(c) 钠长石(5 110倍),412.5 ℃, 206.25 MPa,5 500 m;(d) 方解石(4 510倍),387.5 ℃,178.5 MPa,4 500 m;(e) 方解石(1 530倍),412.5 ℃,206.25 MPa,5 500 m; (f) 石英(15 340倍),437.5 ℃,233.75 MPa,6 500 m
Fig.11 SEM photos of the authigenic minerals in sandstone
(a)Gypsum (×4 600), 400 ℃, 192.5 MPa, 5 000 m; (b)Oligoclase (×2 600), 412.5 ℃, 206.25 MPa, 5 500 m;(c)Albite(×5 110),412.5 ℃, 206.25 MPa, 5 500 m; (d)Calcite (×4 510), 387.5 ℃, 178.5 MPa, 4 500 m;(e) Calcite(×1 530),412.5 ℃, 206.25 MPa, 5 500 m; (f) Quartz (×15 340),437.5 ℃, 233.75 MPa, 6 500 m
图12 泥岩中自生黏土矿物扫描电镜照片
(a) 片状I/S混层(5 020倍),325 ℃,123.5 MPa,2 500 m;(b) 片状I/S混层(2 130倍),387.5 ℃,178.5 MPa,4 500 m;(c) 片状I/S混层(4 350倍),400 ℃,192.5 MPa,5 000 m;(d) 丝状伊利石(7 500倍),375 ℃,165 MPa,4 000 m;(e) 片状伊利石(3 920倍),425 ℃,220 MPa,6 000 m;(f) 片状伊利石(5 160倍),437.5 ℃,233.75 MPa,6 500 m;(g) 针状、片状绿泥石(2 390倍),325 ℃,123.5 MPa,2 500 m;(h) 花朵状、片状绿泥石(4 010倍),375 ℃,165 MPa,4 000 m;(i) 针状、片状绿泥石(4 870倍),412.5 ℃,206.25 MPa,5 500 m
Fig.12 SEM photos of the authigenic clay minerals in mudstone
(a) Flake-like I/S mixed layer (×5 020), 325 ℃,123.5 MPa, 2 500 m; (b) Flake-like I/S mixed layer (×2 130),387.5 ℃,178.5 MPa, 4 500 m; (c)Flake-like I/S mixed layer(×4 350),400 ℃,192.5 MPa,5 000 m; (d)Filiform illite (×7 500), 375 ℃,165 MPa, 4 000 m; (e)Flake-like illite (×3 920), 425 ℃, 220 MPa, 6 000 m; (f)Flake-like illite(×5 160), 437.5 ℃, 233.75 MPa, 6 500 m; (g)Acicular, flake-like chlorite (×2 390), 325 ℃, 123.5 MPa, 2 500 m; (h)Flower-like, flake-like chlorite (×4 010), 375 ℃,165 MPa,4 000 m; (i)Acicula, flake-like chlorite (×4 870), 412.5 ℃,206.25 MPa, 5 500 m
图12 泥岩中自生黏土矿物扫描电镜照片
(a) 片状I/S混层(5 020倍),325 ℃,123.5 MPa,2 500 m;(b) 片状I/S混层(2 130倍),387.5 ℃,178.5 MPa,4 500 m;(c) 片状I/S混层(4 350倍),400 ℃,192.5 MPa,5 000 m;(d) 丝状伊利石(7 500倍),375 ℃,165 MPa,4 000 m;(e) 片状伊利石(3 920倍),425 ℃,220 MPa,6 000 m;(f) 片状伊利石(5 160倍),437.5 ℃,233.75 MPa,6 500 m;(g) 针状、片状绿泥石(2 390倍),325 ℃,123.5 MPa,2 500 m;(h) 花朵状、片状绿泥石(4 010倍),375 ℃,165 MPa,4 000 m;(i) 针状、片状绿泥石(4 870倍),412.5 ℃,206.25 MPa,5 500 m
Fig.12 SEM photos of the authigenic clay minerals in mudstone
(a) Flake-like I/S mixed layer (×5 020), 325 ℃,123.5 MPa, 2 500 m; (b) Flake-like I/S mixed layer (×2 130),387.5 ℃,178.5 MPa, 4 500 m; (c)Flake-like I/S mixed layer(×4 350),400 ℃,192.5 MPa,5 000 m; (d)Filiform illite (×7 500), 375 ℃,165 MPa, 4 000 m; (e)Flake-like illite (×3 920), 425 ℃, 220 MPa, 6 000 m; (f)Flake-like illite(×5 160), 437.5 ℃, 233.75 MPa, 6 500 m; (g)Acicular, flake-like chlorite (×2 390), 325 ℃, 123.5 MPa, 2 500 m; (h)Flower-like, flake-like chlorite (×4 010), 375 ℃,165 MPa,4 000 m; (i)Acicula, flake-like chlorite (×4 870), 412.5 ℃,206.25 MPa, 5 500 m
表6 库车迪北侏罗系粗砂岩成岩物理模拟实验黏土矿物相对含量统计表
Table 6 The clay minerals relative content of the coarse sandstone samples from Dibei in Kuqa depression
表6 库车迪北侏罗系粗砂岩成岩物理模拟实验黏土矿物相对含量统计表
Table 6 The clay minerals relative content of the coarse sandstone samples from Dibei in Kuqa depression
[1] Yu Bingsong,Lai Xingyun.Dissolution of calcite cement and its contribution to the secondary pores of reservoir in the Kela 2 gas field in the Tarim Basin[J]. Journal of Mineralogy and Petrology, 2006, 26(2):74-79.
[于炳松,赖兴运. 克拉2气田储集岩中方解石胶结物的溶解及其对次生孔隙的贡献[J]. 矿物岩石,2006,26(2):74-79.]
[2] Zhong Dakang,Zhu Xiaomin.Reservoirs characteristics and formation mechanism of high quality reservoirs in Kela 2 gas field[J].Natural Gas Industry, 2007,27(1): 8-11.
[钟大康,朱筱敏. 克拉2气田储层特征及优质储层形成机理[J]. 天然气工业,2007,27(1): 8-11.]
[3] Zhang Bin, Huang Ling, Wu Ying,et al. Quantitative evaluation of crude oil composition changes caused by strong gas washing: A case study of natural gas pool in Kuqa Depression[J]. Earth Science Frontiers, 2010, 17(4): 270-278.
[张斌,黄凌,吴英,等. 强烈气洗作用导致原油成分变化的定量计算:以库车坳陷天然气藏为例[J]. 地学前缘,2010,17(4):270-278.]
[4] Xing Enyuan, Pang Xiongqi, Xiao Zhongyao, et al. Type discrimination of Yinan 2 gas reservoir in Kuqa Depression, Tarim Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(6): 21-28.
[邢恩袁,庞雄奇,肖中尧,等. 塔里木盆地库车坳陷依南2气藏类型的判别[J].中国石油大学学报:自然科学版,2011,35(6):21-28.]
[5] Du Jinhu, Wang Zhaoming, Hu Suyun,et al. Formation and geological characteristics of deep giant gas provinces in the Kuqa foreland thrust belt, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(4): 385-393.
[杜金虎,王招明,胡素云,等.库车前陆冲断带深层大气区形成条件与地质特征[J].石油勘探与开发,2012,39(4):385-393.]
[6] Xing Housong, Li Jun, Sun Haiyun,et al. Differences of hydrocarbon reservoir forming between southwestern Tarim Basin and Kuche mountain front[J]. Natural Gas Geoscience, 2012, 23(1): 36-45.
[邢厚松,李君,孙海云,等.塔里木盆地塔西南与库车山前带油气成藏差异性研究及勘探建议[J].天然气地球科学,2012,23(1):36-45.]
[7] Liu Yukui,Wu Guanghui,Hu Jianfeng, et al. Analyzing the characteristics of Yinan 2 gas reservoir in Kuche Depression of Tarim Basin[J]. Natural Gas Industry, 2004, 24(7): 12-16.
[刘玉魁,邬光辉,胡剑风,等.塔里木盆地库车坳陷依南2气藏特征解析[J].天然气工业,2004,24(7):12-16.]
[8] Hu Zuowei, Li Yun, Huang Sijing, et al. Reviews of the destruction and preservation of primary porosity in the sandstone reservoirs[J]. Advances in Earth Science, 2012, 27(1): 14-25.
[胡作维,李云,黄思静,等.砂岩储层中原生孔隙的破坏与保存机制研究进展[J].地球科学进展,2012,27(1):14-25.]
[9] Li Zhuo, Jiang Zhenxue, Pang Xiongqi, et al. Genetic types of the tight sandstones gas reservoirs in the Kuqa Depression,Tarim Basin, NW China[J]. Earth ScienceJournal of China University of Geosciences, 2013, 38(1): 156-164.
[李卓,姜振学,庞雄奇,等.塔里木盆地库车坳陷致密砂岩气藏成因类型[J].地球科学——中国地质大学学报,2013,38(1):156-164.]
[10] Tang Pengcheng, Rao Gang, Li Shiqin,et al. The impact of salt layers thickness on the structural characteristics and evolution of detachment folds in the leading edge of Kuqa fold and thrust belt[J]. Earth Science Frontiers, 2015, 22(1): 312-327.
[唐鹏程,饶刚,李世琴,等. 库车褶皱—冲断带前缘盐层厚度对滑脱褶皱构造特征及演化的影响[J].地学前缘,2015,22(1):312-327.]
[11] Guo Xiaowen, Liu Keyu, Song Yan, et al. Relationship between tight sandstone reservoir formation and petroleum change in Dabei Area of Kuqa foreland basin[J]. Earth ScienceJournal of China University of Geosciences, 2016,41(3): 394-402.
[郭小文,刘可禹,宋岩,等. 库车前陆盆地大北地区砂岩储层致密化与油气充注的关系[J].地球科学——中国地质大学学报,2016,41(3):394-402.]
[12] Lin Tong, Ran Qigui,Wei Hongxing, et al. Pore-throat characteristics of tight sandstones and its influence on reservoirs in Dibei area of the Kuqa Depression[J]. Petroleum Geology and Experiment, 2015, 37(6): 696-703.
[林潼,冉启贵,魏红兴,等.库车坳陷迪北地区致密砂岩孔喉形态特征及其对储层的影响[J].石油实验地质,2015,37(6):696-703.]
doi: 10.11781/sysydz201506696    
[13] Jiang Zhenxue, Li Feng, Yang Haijun, et al. Development characteristics of fractures in Jurassic tight reservoir in Dibei area of Kuqa depression and its reservoir-controlling mode[J]. Acta Petrolei Sinica, 2015, 36(Suppl.2):102-111.
[姜振学,李峰,杨海军,等. 库车坳陷迪北地区侏罗系致密储层裂缝发育特征及控藏模式[J]. 石油学报,2015,36(增刊2):102-111.]
[14] Li Feng, Jiang Zhenxue, Li Zhuo, et al. Enriched mechanism of natural gas of lower Jurassic in Dibei area, Kuqa Depression[J]. Earth ScienceJournal of China University of Geosciences, 2015, 40(9): 1 538-1 548.
[李峰,姜振学,李卓,等. 库车坳陷迪北地区下侏罗统天然气富集机制[J]. 地球科学——中国地质大学学报,2015,40(9):1 538-1 548.]
[15] Yu Xuan, Hou Guiyan, Li Yong, et al. Quantitative prediction of tectonic fractures of Lower Jurassic Ahe Formation sandstones in Dibei gas field[J]. Earth Science Frontiers, 2016, 23(1): 240-252.
[于璇,侯贵延,李勇,等. 迪北气田三维探区下侏罗统阿合组裂缝定量预测[J].地学前缘,2016,23(1):240-252.]
[16] Chester J S, Lenz S C, Chester F M, et al. Mechanisms of compaction of quartz sand at diagenetic conditions[J]. Earth and Planetary Science Letters, 2004, 220(3/4): 435-451.
doi: 10.1016/S0012-821X(04)00054-8     URL    
[17] Patrick B, Emmanuelle K, Wong Tengfong.Compaction localization in porous sandstones: Spatial evolution of damage and acoustic emission activity[J]. Journal of Structural Geology, 2004, 26(4): 603-624.
doi: 10.1016/j.jsg.2003.09.002     URL    
[18] Makowitz A, Lander R H, Milliken K L.Diagenetic modeling to assess the relative timing of quartz cementation and brittle grain processes during compaction[J]. AAPG Bulletin, 2006, 90(6): 873-885.
doi: 10.1306/12190505044     URL    
[19] Olson J E, Laubach S E, Lander R H.Natural fracture characterization in tight gas sandstones: Integrating mechanics and diagenesis[J]. AAPG Bulletin, 2009, 93(11): 1 535-1 549.
doi: 10.1306/08110909100     URL    
[20] Ajdukiewicz J M, Lander R H.Sandstone reservoir quality prediction: The state of the art[J]. AAPG Bulletin, 2010, 94(8): 1 083-1 091.
doi: 10.1306/intro060110     URL    
[21] Olson J E, Laubach S E.Introduction to this special section: Hydrofracturing-Modern and novel methods[J]. The Leading Edge, 2010, 33(10): 1 088.
[22] Sung Lee D, Elsworth D, Yasuhara H, et al. Experiment and modeling to evaluate the effects of proppant-pack diagenesis on fracture treatments[J]. Journal of Petroleum Science and Engineering, 2010, 74(1): 67-76.
doi: 10.1016/j.petrol.2010.08.007     URL    
[23] Dahi-Taleghani A, Olson J E.Numerical modeling of multistranded-hydraulic-fracture propagation: Accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575-581.
doi: 10.2118/124884-PA     URL    
[24] Graveleau F, Hurtrez J E, Dominguez S, et al. A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes[J]. Tectonophysics, 2011, 513: 68-87.
doi: 10.1016/j.tecto.2011.09.029     URL    
[25] Zanella A, Cobbold P R, Le Carlier de Veslud C. Physical modelling of chemical compaction, overpressure development, hydraulic fracturing and thrust detachments in organic-rich source rock[J]. Marine & Petroleum Geology, 2014, 55: 262-274.
[26] Meng Yuanlin,Wang Zhiguo,Yang Junsheng,et al. Comprehensive process-oriented simulation of diagenesis and its application[J]. Petroleum Geology and Experiment, 2003, 25(2): 211-215.
[孟元林,王志国,杨俊生,等. 成岩作用过程综合模拟及其应用[J]. 石油实验地质,2003,25(2):211-215.]
doi: 10.11781/sysydz200302211    
[27] Liu Guoyong, Jin Zhijun, Zhang Liuping.Simulation study on clastic rock diagenetic compaction[J]. Acta Sedimentologica Sinica, 2006, 24(3): 407-413.
[刘国勇,金之钧,张刘平. 碎屑岩成岩压实作用模拟实验研究[J]. 沉积学报,2006,24(3):407-413.]
[28] Shou Jianfeng, Zhang Huiliang, Shen Yang.Diagenetic mechanisms of sandstone reservoirs in China oil and gas-bearing basins[J]. Acta Petrologica Sinica, 2006, 22(8):2 165-2 170.
[寿建峰,张惠良,沈扬.中国油气盆地砂岩储层的成岩压实机制分析[J].岩石学报,2006,22(8):2 165-2 170.]
[29] Shi Liang, Jin Zhenkui, Yan Wei, et al. Characteristics of pressure response in detrital resveroir compaction and cementation[J]. Advances in Earth Science, 2015, 30(2): 259-267.
[石良,金振奎,闫伟,等.储层压实作用和胶结作用的压力响应特征[J]. 地球科学进展,2015,30(2):259-267.]
doi: 10.11867/j.issn.1001-8166.2015.02.0259    
[30] Franca A B, Aratljo L M, Maynard J B, et al. Secondary porosity formed by deep meteoric leaching: Botucatu eolianite, southern South America[J]. AAPG Bulletin, 2003, 87(7): 1 073-1 082.
doi: 10.1306/02260301071     URL    
[31] Xiang Tingsheng,Cai Chunfang, Fu Huae.Dissolution of microcline by carboxylic acids at different temperatures and complexing reaction of Alanion with carboxylic acid in aqueous solution[J]. Acta Sedimentologica Sinica, 2004, 22(4): 597-602.
[向廷生,蔡春芳,付华娥. 不同温度、羧酸溶液中长石溶解模拟实验[J]. 沉积学报,2004,22(4):597-602.]
[32] Zhang Meng.For the Characteristics of the Dissolution of Primary Minerals Related to Clastics Diagenesis Thermodynamics Model and Dissolution Experiment Modeling Effort for Secondary Porosity Forming Mechanism of Upper-Palaeozoic, Ordos Basin[D]. Chengdu:Chengdu University of Technology, 2007: 15-26.
[张萌. 鄂尔多斯盆地上古生界碎屑岩次生孔隙形成机制的热力学计算和溶蚀实验模拟研究[D]. 成都:成都理工大学,2007:15-26.]
[33] Zhu Xiaomin, Sun Chao, Liu Chenglin, et al. Reservoir diagenesis and fluid-rock interaction simulation of the Sulige gas field in the Ordos Basin[J]. Geology in China, 2007, 34(2): 276-282.
[朱筱敏,孙超,刘成林,等. 鄂尔多斯盆地苏里格气田储层成岩作用与模拟[J]. 中国地质,2007,34(2):276-282.]
[34] Huang Keke, Huang Sijing,Tong Hongpeng, et al. Thermodynamic calculation of feldspar dissolution and its significance on research of clastic reservoir[J]. Geological Bulletin of China, 2009, 28(4): 474-482.
[黄可可,黄思静,佟宏鹏,等. 长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J]. 地质通报,2009,28(4):474-482.]
[35] Huang Sijing, Gong Yechao, Huang Keke, et al. The influence of burial history on Carbonate dissolution and precipitation—A case study from Feixianguan Formation of Triassic, NE Sichuan and ordovician carbonate of Northern Tarim Basin[J].Advances in Earth Science, 2010, 25(4): 381-390.
[黄思静,龚业超,黄可可,等. 埋藏历史对碳酸盐溶解—沉淀的影响——以四川盆地东北部三叠系飞仙关组和塔里木盆地北部奥陶系为例[J]. 地球科学进展,2010,25(4):381-390.]
[36] Zhang Yongwang, Zeng Jianhui, Zhang Shanwen, et al. An overview of feldspar dissolution experiments[J]. Geological Science and Technology Information, 2009, 28(1): 31-37.
[张永旺,曾溅辉,张善文,等. 长石溶解模拟实验研究综述[J]. 地质科技情报,2009, 28(1):31-37.]
[37] Feng Jiarui, Gao Zhiyong, Cui Jinggang, et al. Reservoir porosity evolution characteristics and evaluation of the slope belt in the southern margin of the Junggar Basin: Insight from diagenesis modeling experiments[J]. Geological Science and Technology Information, 2014, 33(5): 134-140.
[冯佳睿,高志勇,崔京钢,等. 准南斜坡带砂岩储层孔隙演化特征与有利储层评价:基于成岩物理模拟实验研究[J]. 地质科技情报,2014,33(5):134-140.]
[38] Cao Yingchang, Xi Kelai, Wang Jian, et al. Preliminary discussion of simulation experiments on the mechanical compaction and physical property evolution of sandstones[J]. Geoscience, 2011, 25(6):1 152-1 158.
[操应长,葸克来,王健,等. 砂岩机械压实与物性演化成岩模拟实验初探[J]. 现代地质,2011,25(6):1 152-1 158.]
[39] Hellmann R, Tisserand D.Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar[J]. Geochimica et Cosmochimica Acta, 2006, 70: 364-383.
doi: 10.1016/j.gca.2005.10.007     URL    
[40] Arvidson R S, Luttge A.Mineral dissolution kinetics as a function of distance from equilibrium new experimental results[J]. Chemical Geology, 2010, 269: 79-88.
doi: 10.1016/j.chemgeo.2009.06.009     URL    
[41] Tutolo B M, Luhmann A J, Kong X Z, et al. CO2 sequestration in feldspar-rich sandstone: Coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties[J]. Geochimica et Cosmochimica Acta, 2015, 160: 132-154.
doi: 10.1016/j.gca.2015.04.002     URL    
[42] Qu Xiyu.The Experiment Research of CO2-sandstone Interaction, and Application CO2 Gas Reservoir[D]. Changchun:Jilin University, 2007: 22-32.
[曲希玉. CO2流体—砂岩相互作用的实验研究及其在CO2气储层中的应用[D]. 长春:吉林大学,2007:22-32.]
[43] Liu Lihui, Yuko Suto, Greg Bignall, et al. CO2 injection to granite and sandstone in experimental rock/hot water systems[J]. Energy Conversion and Management, 2003, 44: 1 399-1 410.
doi: 10.1016/S0196-8904(02)00160-7     URL    
[44] Ye Qing, Chen Hongyu, Cheng Qiuquan.A new type of diagenetic simulation device[J]. Petroleum Instruments, 2004, 18(4): 28-30.
[叶庆,陈红宇,承秋泉. 一种新型的成岩模拟实验装置[J]. 石油仪器,2004,18(4):28-30.]
[45] Liu Jianqing, Lai Xingyun,Yu Bingsong, et al. The thermodynamics equilibrium condition of carbonate minerals in strata environment and its application in Kela 2 gas field, Kuqua Depression[J]. Acta Sedimentologica Sinica, 2006, 24(5): 636-640.
[刘建清,赖兴运,于炳松,等. 地层水条件下碳酸盐矿物热力学平衡条件及其在克拉2气田的应用[J]. 沉积学报,2006,24(5):636-640.]
[46] Guan Shuwei, Chen Zhuxin, Li Benliang, et al. Discussions on the character and interpretation model of Kelasu deep structures in the Kuqa area[J]. Petroleum Exploration and Development, 2010, 37(5): 531-536.
[管树巍, 陈竹新, 李本亮, 等. 再论库车克拉苏深部构造的性质与解释模型[J]. 石油勘探与开发,2010,37(5):531-536.]
doi: 10.1016/S1876-3804(10)60053-5    
[47] Wang Liangshu, Li Cheng, Liu Shaowen, et al. Geotemperature gradient distribution of Kuqa Foreland Basin, north of Tarim, China[J]. Chinese Journal of Geophysics, 2003, 46(3): 403-407.
[王良书,李成,刘绍文,等. 塔里木盆地北缘库车前陆盆地地温梯度分布特征[J]. 地球物理学报,2003,46(3):403-407.]
[48] Shen Yanping, Wu Chaodong, Yue Laiqun, et al. An analysis of Jurassic sandstone fragment components and their provenance in Kuqa Depression[J]. Acta Geoscientia Sinica, 2005, 26(3): 235-240.
[申延平,吴朝东,岳来群,等. 库车坳陷侏罗系砂岩碎屑组分及物源分析[J]. 地球学报,2005,26(3):235-240.]
[49] Gao Zhiyong, Cui Jinggang, Feng Jiarui, et al. An effect of burial compaction on deep reservoirs of foreland basins and its reworking mechanism[J]. Acta Petrolei Sinica, 2013, 34(5): 867-876.
[高志勇,崔京钢,冯佳睿,等. 埋藏压实作用对前陆盆地深部储层的作用过程与改造机制[J].石油学报,2013,34(5):867-876.]
[50] Lu Hui, Lu Xuesong, Fan Junjia, et al. The controlling effects of fractures on gas accumulation and production in tight sandstone: A case of Jurassic Dibei gas reservoir in the East Kuqa Foreland Basin[J]. Natural Gas Geoscience, 2015, 26(6): 1 047-1 056.
[卢慧,鲁雪松,范俊佳,等. 裂缝对致密砂岩气成藏富集与高产的控制作用——以库车前陆盆地东部侏罗系迪北气藏为例[J].天然气地球科学,2015,26(6):1 047-1 056.]
[51] Li Feng, Jiang Zhenxue, Li Zhuo, et al. Fluid inclusion characteristics and hydrocarbon charge history of Dibei gas reservoir in the Kuqa depression[J]. Journal of Central South University (Science and Technology), 2016, 47(2): 515-523.
[李峰,姜振学,李卓,等. 库车坳陷迪北气藏流体包裹体特征及油气充注历史[J]. 中南大学学报:自然科学版,2016,47(2):515-523.]
[52] Sweeney J J, Burnham A K.Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. The AAPG Bulletin, 1990,74(10):1 559-1 570.
[53] Gao Zhiyong, Zhu Rukai, Feng Jiarui, et al.Structure, Filling Response and Deep Reservoir Characteristics in China Foreland Basin[M]. Beijing: Geological Press, 2016.
[高志勇,朱如凯,冯佳睿,等. 中国前陆盆地构造—沉积充填响应与深层储层特征[M]. 北京:地质出版社,2016.]
[1] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[2] 郑庆华, 柳益群. 鄂尔多斯盆地华庆地区延长组长4+5致密油层成岩作用及成岩相[J]. 地球科学进展, 2015, 30(1): 78-90.
[3] 张金亮,张鹏辉,谢俊,董紫睿,张明,丁芳,袁勇,李景哲. 碎屑岩储集层成岩作用研究进展与展望[J]. 地球科学进展, 2013, 28(9): 957-967.
[4] 胡作维,李云,黄思静,吕杰,朱炳光. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展, 2012, 27(1): 14-25.
[5] 刘喜停,颜佳新. 铁元素对海相沉积物早期成岩作用的影响[J]. 地球科学进展, 2011, 26(5): 482-492.
[6] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364.
[7] 林春明, 张霞, 周健, 徐深谋, 俞昊, 陈召佑. 鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征[J]. 地球科学进展, 2011, 26(2): 212-223.
[8] 朱如凯,邹才能,白斌,苏玲,高志勇,罗忠. 全球油气勘探研究进展及对沉积储层研究的需求[J]. 地球科学进展, 2011, 26(11): 1150-1161.
[9] 黄思静,龚业超,黄可可,佟宏鹏. 埋藏历史对碳酸盐溶解—沉淀的影响——以四川盆地东北部三叠系飞仙关组和塔里木盆地北部奥陶系为例[J]. 地球科学进展, 2010, 25(4): 381-390.
[10] 黄思静,佟宏鹏,黄可可,刘丽红,张雪花. 阴极发光分析在恢复砂岩碎屑长石含量中的应用 ——鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球科学进展, 2008, 23(10): 1013-1019.
[11] 黄思静,Hairuo QING,胡作维,王春梅,郜晓勇,邹明亮,王庆东. 四川盆地东北部三叠系飞仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题[J]. 地球科学进展, 2007, 22(5): 495-503.
[12] 高辉,宋广寿,孙卫,任国富,张创,韩宗元. 储层特低渗透成因分析与评价--以安塞油田沿25区块为例[J]. 地球科学进展, 2007, 22(11): 1129-1133.
[13] 陈红汉. “第三届国际地质流体大会(Geofluids III)”简介[J]. 地球科学进展, 2001, 16(2): 288-289.
[14] 刘 立,于均民,孙晓明,杨庆杰. 热对流成岩作用的基本特征与研究意义[J]. 地球科学进展, 2000, 15(5): 583-585.
阅读次数
全文


摘要