地球科学进展 ›› 2015, Vol. 30 ›› Issue (6): 680 -690. doi: 10.11867/j.issn.1001-8166.2015.06.0680

研究论文 上一篇    下一篇

黑河流域地表反照率估算及其时空特征分析
吴胜标 1, 2, 闻建光 1, 刘强 3, 窦宝成 1, 游冬琴 1   
  1. 1.遥感科学国家重点实验室,中国科学院遥感与数字地球研究所,北京 100101; 2.中国科学院大学,北京 100049; 3.全球变化与地球系统科学研究院,北京师范大学,北京,100875
  • 出版日期:2015-06-25
  • 基金资助:

    国家自然科学基金项目“多源遥感数据地表BRDF/反照率联合反演方法及试验验证”(编号:41271368 )和“冰雪和海洋表面的二向反射和反照率实用模型研究”(编号:41371356)资助

Estimation of Land Surface Albedo and Spatio-Temporal variability over Heihe River Basin

Wu Shengbiao 1, 2, Wen Jianguang 1, Liu Qiang 3, Dou Baocheng 1, 2, You Dongqin 1, 2   

  1. 1. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences,Beijing 100101,China; 2. University of Chinese Academy of Sciences,Beijing 10049,China; 3. College of Global Change and Earth System Science, Beijing Normal University,Beijing 100875,China
  • Online:2015-06-25 Published:2015-06-25

基于不同空间尺度、长时间序列的地表反照率产品探究黑河流域2000—2012年的反照率时空变化特征。首先基于角度格网化(AB)算法对黑河流域30 m环境卫星一号HJ-1/CCD大气层顶方向反射率进行了地表反照率估算,作为高空间分辨率的地表反照率产品;选择同种算法计算的1 km空间分辨率的Global LAnd Surface Satellite(GLASS)反照率产品作为低空间分辨率反照率产品。结果表明:①利用AB算法反演的HJ卫星反照率具有较高精度,满足流域尺度反照率时空特征分析的精度要求;②黑河流域地表反照率空间分布差异显著,流域上游植被覆盖区域反照率较低,中下游荒漠地表反照率较高;③流域地表反照率的年内变化与季节性降雪和作物物候周期性变化一致。从季节变化角度,黑河流域反照率月平均值的年变化呈“U”字型,其中,冬季反照率最高,春季和秋季次之,夏季最低。从年际变化角度,黑河下游反照率呈上升趋势,上游和整个流域呈下降趋势。

We used both high resolution with short-term albedo and moderate resolution with long-term albedo products to analyze the spatial-temporal characteristis of the Heihe River Basin during the years of 2000-2012. The 30 m land surface albedo product derived from HJ-1/CCD image by Angular Bin(AB) algorithm was evaluated through ground Automatic Weather Stations (AWS) measurements and compared with Global LAnd Surface Satellite (GLASS) albedo product.The spatial and temporal heterogeneity of land surface albedo over the Heihe River Basin were investigated by using both the HJ albedo product and GLASS albedo product. Preliminary validation results show that the HJ albedo product is well consistent with field measurements. The spatial patterns of annual average albedo during 2000-2012 are heterogeneous across the Heihe River Basin,lower in the upstream covered with vegetation and higher in the middle and down reaches of the desert. The heterogeneity of land surface albedo is consistent with the seasonal snowfall and the phenological cycles of crop. The albedo of upstream decreases year by year,while the downstream and the total basin increased. The annual cycles of albedo present an U-shape. The albedo has an obvious seasonal difference,which is highest in winter,followed by spring and autumn,lowest in summer.

中图分类号: 

[1] Dickinson R E. Land processes in climate models[J]. Remote Sensing of Environment, 1995, 51(1): 27-38.
[2] Cui Y, Mitomi Y, Takamura T. An empirical anisotropy correction model for estimating land surface albedo for radiation budget studies[J]. Remote Sensing of Environment, 2009, 113(1): 24-39.
[3] Loew A, Govaerts Y. Towards multidecadal consistent Meteosat surface albedo time series[J]. Remote Sensing, 2010, 2(4): 957-967.
[4] Lawrence D M, Oleson K W, Flanner M G, et al. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model[J]. Journal of Advances in Modeling Earth Systems, 2011, 3(1): 1-27.
[5] Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(5): 481-498.[李新,刘绍民,马明国,等.黑河流域生态—水文过程综合遥感观测联合试验总体设计[J].地球科学进展,2012,27(5):481-498.]
[6] Chen Hongping, Jia Gensuo, Feng Jinming, et al. Remote sensing estimates of key land surface vegetation variables used in climate model: A review[J]. Advances in Earth Science, 2014, 29(1): 56-67.[陈洪萍, 贾根锁, 冯锦明,等.气候模式中关键陆面植被参量遥感估算的研究进展[J]. 地球科学进展, 2014,29(1):56-67.]
[7] Lyons E A, Jin Y, Randerson J T. Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations[J].Journal of Geophysical Research: Biogeosciences (2005-2012), 2008, 113(G2): 1-15.
[8] Román M O, Schaaf C B, Woodcock C E, et al. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes[J]. Remote Sensing of Environment, 2009, 113(11): 2 476-2 498.
[9] Wang Z, Schaaf C B, Strahler A H, et al. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods[J]. Remote Sensing of Environment, 2014, 140: 60-77.
[10] Jonsell U, Hock R, Holmgren B. Spatial and temporal variations in albedo on Storglaciären, Sweden[J]. Journal of Glaciology, 2003, 49(164): 59-68.
[11] Moody E G, King M D, Platnick S, et al. Spatially complete global spectral surface albedos: Value-added datasets derived from Terra MODIS land products[J]. IEEE Tranactions on Geoscience and Remote Sensing, 2005, 43(1): 144-158.
[12] Tsvetsinskaya E A, Schaaf C B, Gao F, et al. Spatial and temporal variability in Moderate Resolution Imaging Spectroradiometer-derived surface albedo over global arid regions[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2006, 111(D20): 1-10.
[13] Moody E G, King M D, Schaaf C B, et al. MODIS-derived spatially complete surface albedo products: Spatial and temporal pixel distribution and zonal averages[J]. Journal of applied meteorology and climatology, 2008, 47(11): 2 879-2 894.
[14] Wang Kaicun, Liu Jingmiao, Zhou Xiuji, et al. Retrieval of the surface albedo under clear sky over China and its characteristics analysis by using MODIS satellite date[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(6): 941-949.[王开存, 刘晶淼, 周秀骥,等. 利用MODIS卫星资料反演中国地区晴空地表短波反照率及其特征分析[J]. 大气科学,2004,28(6): 941-949.]
[15] Cai Fu, Zhu Qinglin, He Honglin, et al. Estimation and spatio-temporal distribution of monthly mean surface albedo in China[J]. Resources Science, 2005, 27(1): 114-120.[蔡福, 祝青林, 何洪林,等. 中国月平均地表反照率的估算及其时空分布[J]. 资源科学, 2005, 27(1): 114-120.]
[16] Wang Yi, Zhu Bin, Liu Yu, et al. Trend of surface albedo changes in China in last decade[J]. Meteorological Science and Technology, 2011, 39(2): 147-155.[王艺, 朱彬, 刘煜,等. 中国地区近 10 年地表反照率变化趋势[J]. 气象科技, 2011, 39(2): 147-155.]
[17] Cheng Guodong, Xiao Honglang, Fu Bojie, et al. Advances in synthetic research on the eco-hydrological process of the Heihe River Basin[J]. Advances in Earth Science, 2014, 29(4): 431-437.[程国栋, 肖洪浪, 傅伯杰,等. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.]
[18] Deng Ruru. Retrieval for Albedo of Ground Surface and Thermal Effect Analysis on Tibetan Plateau[D]. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2002.[邓孺孺. 青藏高原地表反照率反演及冷热源分析[D]. 北京:中国科学院遥感应用研究所, 2002.]
[19] Chen Aijun, Bian Lin’gen, Liu Yujie, et al. Using MODIS data to retrieve albedo over the Qinghai-Tibet Plateau[J]. Journal of Nanjing Institute of Meteorology, 2009, 32(2): 222-229.[陈爱军,卞林根,刘玉洁,等.应用 MODIS 数据反演青藏高原地区地表反照率[J]. 南京气象学院学报, 2009, 32(2): 222-229.]
[20] Xu Xingkui. A study of monthly-mean surface albedo of the Yangtze River delta[J]. Chinese Journal of Atmosphric Sciences, 2002, 26(3): 394-400.[徐兴奎.长江三角洲地区表月平均反照率的卫星遥感研究[J]. 大气科学,2002,26(3): 394-400.]
[21] Wang Ge. Distribution of surface albedo in China during 1982-2000[J]. Plateau Meteorology, 2010, 29(1): 146-151.[王鸽. 1982—2000年中国区域地表反照率时空分布特征[J]. 高原气象, 2010, 29(1): 146-151.]
[22] Yang Juan, Chen Hongbin, Wang Kaicun, et al. Analysis of the surface albedo distribution and variation in Beijing region by using the MODIS data[J]. Remote Sensing Technology and Application, 2006, 21(5): 403-406.[杨娟, 陈洪滨, 王开存,等.利用 MODIS 卫星资料分析北京地区地表反照率时空分布及变化特征[J]. 遥感技术与应用, 2006, 21(5): 403-406.]
[23] Li Z, Garand L. Estimation of surface albedo from space: A parameterization for global application[J]. Journal of Geophysical Research:Atmospheres(1984-2012), 1994, 99(D4): 8 335-8 350.
[24] Liang S. Narrowband to broadband conversions of land surface albedo I: Algorithms[J]. Remote Sensing of Environment, 2001, 76(2): 213-238.
[25] He T, Liang S, Wang D, et al. Estimation of surface albedo and directional reflectance from Moderate Resolution Imaging Spectroradiometer (MODIS) observations[J]. Remote Sensing of Environment, 2012, 119: 286-300.
[26] Zhang Jie, Zhang Qiang, Guo Ni, et al. Retrieval of the land surface albedo over arid oasis of northwest China from EOS-MODIS data[J]. Chinese Journal of Atmosphric Sciences, 2005, 29(4): 510-517.[张杰, 张强, 郭铌,等.应用 EOS—MODIS 卫星资料反演西北干旱绿洲的地表反照率[J]. 大气科学, 2005, 29(4): 510-517.]
[27] Zhai Jun, Liu Ronggao, Liu Jiyuan, et al. Radiative forcing over China due to albedo change caused by land cover change during 1990-2010[J]. Journal of Geographical Science, 2013, 68(7): 875-885.[翟俊, 刘荣高, 刘纪远,等.1990—2010年中国土地覆被变化引起反照率改变的辐射强迫[J]. 地理学报, 2013, 68(7): 875-885.]
[28] Jin Lianji, Liu Jingmiao, Li Yanling, et al. Deriving the surface albedo over the Yangtze Delta from NOAA-AVHRR data[J]. Journal of Nanjing Institute of Meteorology, 2002, 25(1): 28-35.[金莲姬, 刘晶淼, 李雁领,等.利用NOAA-AVHRR遥感资料反演长江三角洲地表反照率的试验[J]. 南京气象学院学报, 2002, 25(1): 28-35.]
[29] Chen Aijun, Liang Xuewei, Bian Lin’gen, et al. Assessment on the accuracy of MODIS albedos over the Tibetan Plateau[J]. Transactions of Atmospheric Sciences,2013,35(6): 664-672.[陈爱军, 梁学伟, 卞林根,等.青藏高原地区 MODIS 反照率的精度分析[J]. 大气科学学报, 2013, 35(6): 664-672.]
[30] Liu Sanchao, Zhang Wanchang, Jiang Jianjun, et al. Derivation of ground reflectance and aibedo by integration of landsat themtic mapper and DEM in Heihe River Basin, Northwestern China[J]. Scientia Geographica Sinica, 2003, 23(5): 585-591.[刘三超, 张万昌, 蒋建军,等. 用 TM 影像和 DEM 获取黑河流域地表反射率和反照率[J]. 地理科学, 2003, 23(5): 585-591.]
[31] Wang Jiyan, Luo Geping, Lu Lei. Analysis of the spatio-temporal distribution of the surface albedo in Sangong River Basin on the northern slope of Tianshan Mountains using TM image[J]. Geographical Research, 2010 (10):1 899-1 908.[王继燕, 罗格平, 鲁蕾.利用TM影像分析天山北坡三工河流域地表反照率的时空变化[J]. 地理研究, 2010 (10): 1 899-1 908.]
[32] Wang Jie, He Xiaobo, Ye Baisheng, et al. Variations of albedo on the Dongkemadi Glacier, Tanggula Range[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 21-28.[王杰, 何晓波, 叶柏生,等.唐古拉山冬克玛底冰川反照率变化特征研究[J]. 冰川冻土, 2012, 34(1):21-28.]
[33] Zhang Kai, Zhou Hongmin, Wang Jindi, et al. Estimation and validation of high spatio-temporal resolution albedo by fusing Landsat ETM+ and MODIS data[J]. Journal of Remote Sensing, 2014, 18(3): 497-517.[张开,周红敏,王锦地,等.融合Landsat ETM+ 和 MODIS 数据估算高时空分辨率地表短波反照率[J]. 遥感学报, 2014, 18(3):497-517.]
[34] Liu Q, Wang L, Qu Y, et al. Preliminary evaluation of the long-term GLASS albedo product[J]. International Journal of Digital Earth, 2013, 6(Suppl.1): 69-95.
[35] Liu N F, Liu Q, Wang L Z,et al. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data[J]. Hydrology and Earth System Sciences, 2013, 17(6): 2 121-2 129.
[36] Qu Y, Liu Q, Liang S, et al. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data[J]. IEEE Tranactions on Geoscience and Remote Sensing, 2014, 52(2): 907-919.
[37] Liu S M, Xu Z W, Wang W Z, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrology and Earth System Sciences, 2011, 15(4): 1 291-1 306.
[38] Qi Wendong, Liu Qiang, Hong Youtang. Comparison analysis based on different inverse algorithms of surface albedo products[J]. Journal of Remote Sensing, 2014, 18(3): 559-572.[齐文栋, 刘强, 洪友堂. 3种反演算法的地表反照率遥感产品对比分析[J]. 遥感学报, 2014, 18(3): 559-572.]
[39] Wang Jian, Sun Lin. GLASS surface albedo validation by using FLUXNET data[J]. Journal of Shandong Jianzhu University, 2013,(1):50-53.[王健, 孙林. 使用 FLUXNET 数据验证 GLASS 地表反照率[J]. 山东建筑大学学报,2013,(1):50-53.]
[40] Wang Lizhao, Zheng Xuechang, Sun Lin, et al. Validation of GLASS albedo product through Landsat TM data and ground measurements[J]. Journal of Remote Sensing, 2014, 18(3): 547-558.[王立钊, 郑学昌, 孙林,等. 利用 Landsat TM 数据和地面观测数据验证GLASS反照率产品[J]. 遥感学报, 2014, 18(3): 547-558.]
[41] Peng J J, Liu Q, Wen J G, et al. Multi-scale validation strategy for satellite albedo products and its uncertainty analysis[J]. Science in China (Series D), 2015,58(4): 573-588.
[42] Sang Y F,Wang Z G, Liu C M. Research progress on the time series analysis methods in hydrology[J]. Progress in Geography, 2013, 32(1): 20-30.
[43] Gao F, Schaaf C B, Strahler A H, et al. MODIS bidirectional reflectance distribution function and albedo Climate Modeling Grid products and the variability of albedo for major global vegetation types[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2005, 110(D1): 1-13.
[44] Zhang X, Liang S, Wang K, et al. Analysis of global land surface shortwave broadband albedo from multiple data sources[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3): 296-305.
[45] Wu Xuejiao, Lu Anxin, Wang Lihong, et al. Spatial and temporal distribution and trend of snow albedo changes in the source region of the Yangtze River in last decade based on MODIS[J]. Scientia Geographic Sinica, 2013, 33(3): 371-377.[吴雪娇, 鲁安新, 王丽红,等.基于MODIS 的长江源近10年积雪反照率时空分布及动态变化[J]. 地理科学, 2013, 33(3): 371-377.]
[46] Dang Suzhen, Liu Changming, Wang Zhonggen, et al. Spatio-temporal distribution characteristics of snow cover in the upper reaches of Heihe River Basin over the past 10 years and the variation trend[J]. Resources Science, 2012, 34(8): 1 574-1 581.[党素珍,刘昌明,王中根,等. 近10年黑河流域上游积雪时空分布特征及变化趋势[J].资源科学, 2012, 34(8):1 574-1 581.]
[47] Han Lanying, Sun Landong, Zhang Cunjie, et al. The snow coverage change in eastern section of Qilian Mountain and its responding to regional climate[J]. Journal of Arid Land Resources and Environment, 2011, 25(5): 109-112.[韩兰英, 孙兰东, 张存杰,等. 祁连山东段积雪面积变化及其区域气候响应[J]. 干旱区资源与环境, 2011, 25(5): 109-112.]
[48] Liu Huizhi, Tu Gang, Dong Wenjie. Surface albedo variations are different in semi arid region[J]. Chinese Science Bulletin, 2008, 53(10): 1 220-1 227.[刘辉志, 涂钢, 董文杰. 半干旱区不同下垫面地表反照率变化特征[J]. 科学通报, 2008, 53(10): 1 220-1 227.]
[49] Sun Jun, Hu Zeyong, Xun Xueyi, et al. Albedo characteristics in different underlying surfaces in midand upper-reaches of HEIFE and its impact factor analysis[J]. Plateau Meteorology, 2011, 30(3): 607-613.[孙俊, 胡泽勇, 荀学义,等. 黑河中上游不同下垫面反照率特征及其影响因子分析[J]. 高原气象,2011, 30(3): 607-613.]
[50] Li Deshuai, Wang Jinyan, Wang Shigong, et al. Change features of surface albedo of semi-arid grassland over the Loess Plateau of middle part Gansu[J]. Plateau Meteorology, 2014, 33(1): 89-96.[李德帅, 王金艳, 王式功,等. 陇中黄土高原半干旱草地地表反照率的变化特征[J]. 高原气象, 2014, 33(1):89-96.]
[51] Tsvetsinskaya E A, Schaaf C B, Gao F, et al. Relating MODIS derived surface albedo to soils and rock types over Northern Africa and the Arabian peninsula[J]. Geophysical Research Letters, 2002, 29(9): 67-1-67-4.

[1] 马成龙,陈晓东,江利明,孙和平,徐建桥,董景龙,李德伟. 月基 InSAR观测地球大尺度形变能力的初步研究[J]. 地球科学进展, 2019, 34(2): 164-174.
[2] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[3] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[4] 盖迎春, 李新, 田伟, 张艳林, 王维真, 胡晓利. 黑河流域中游人工水循环系统在分水前后的变化[J]. 地球科学进展, 2014, 29(2): 285-294.
[5] 彭小清,张廷军,潘小多,王庆峰,钟歆钥,王康,牟翠翠. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.
[6] 冯起,苏永红,司建华,常宗强,席海洋,郭瑞,陈丽娟,霍红,秦燕燕. 黑河流域生态水文样带调查[J]. 地球科学进展, 2013, 28(2): 187-196.
[7] 焦其顺,朱忠礼,刘绍民,晋锐,杜帆. 宇宙射线快中子法在农田土壤水分测量中的研究与应用[J]. 地球科学进展, 2013, 28(10): 1136-1143.
[8] 颉耀文,王学强,汪桂生,余林. 基于网格化模型的黑河流域中游历史时期耕地分布模拟[J]. 地球科学进展, 2013, 28(1): 71-78.
[9] 晋 锐,李 新,阎保平,罗万明,李秀红,郭建文,马明国,亢 健,张艳林. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9): 993-1005.
[10] 李新,刘绍民,马明国,肖青,柳钦火,晋锐,车涛,王维真,祁元,李弘毅,朱高峰,郭建文,冉有华. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012, 27(5): 481-498.
[11] 肖登攀, 陶福禄, Moiwo Juana P. 全球变化下地表反照率研究进展[J]. 地球科学进展, 2011, 26(11): 1217-1224.
[12] 李新, 程国栋, 康尔泗, 徐中民, 南卓铜, 周剑, 韩旭军, 王书功. 数字黑河的思考与实践3:模型集成[J]. 地球科学进展, 2010, 25(8): 851-865.
[13] 李新, 程国栋, 马明国, 肖青, 晋锐, 冉有华, 赵文智, 冯起, 陈仁升, 胡泽勇, 盖迎春. 数字黑河的思考与实践4:流域观测系统[J]. 地球科学进展, 2010, 25(8): 866-876.
[14] 李新,程国栋,吴立宗. 数字黑河的思考与实践1:为流域科学服务的数字流域[J]. 地球科学进展, 2010, 25(3): 297-305.
[15] 李新,吴立宗,马明国,盖迎春,冉有华,王亮绪,南卓铜. 数字黑河的思考与实践2:数据集成[J]. 地球科学进展, 2010, 25(3): 306-316.
阅读次数
全文


摘要