地球科学进展 ›› 2015, Vol. 30 ›› Issue (6): 636 -646.

综述与评述 上一篇    下一篇

海底地下水排泄研究回顾与进展
李海龙, 王学静   
  1. 中国地质大学(北京)水资源与环境学院,北京 100083
  • 出版日期:2015-06-25
  • 基金资助:

    国家自然科学基金重点项目“渤海和胶州湾海底地下水排泄及其环境效应研究”(编号:41430641)资助

Submarine Groundwater Discharge: A Review

Li Hailong, Wang Xuejing   

  1. School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
  • Online:2015-06-25 Published:2015-06-25

海底地下水排泄是全球水循环的重要组成部分,是近岸、滩涂和河口地区典型而重要的海水—地下水相互作用过程。作为全球水循环的重要组成部分,海底地下水排泄是海洋中水和各种化学物质的重要来源之一,同时也是各种污染物从陆地向海洋输送的一个重要而隐蔽的通道。综述了海底地下水排泄(SGD)的研究现状与进展,对海底地下水排泄的过程、研究方法、研究分布以及环境意义等方面进行了详细介绍,指出了目前研究存在的不足和需要努力的方向,从而为我国开展大规模海底地下水排泄研究提供了一定的思路。

Submarine Groundwater Discharge (SGD), an important component of global water cycle, typical and important seawater-groundwater interaction process in coasts, intertidal zones and estuaries, is recently recognized as a research highlight on the land-ocean interaction. As an important component of global water cycle, SGD is not only one of the important sources of water and chemicals in the ocean, but also an important but hidden pathway for various contaminants transport between land and ocean. This paper reviews the research status and progresses of SGD, with a detailed description of the groundwater discharge process, research methods and spatial distribution and their corresponding environmental significance, etc. The deficiencies in present studies and prospects for future research are proposed to provide some thoughts and scientific basis for the research of large-scale SGD in our country.

中图分类号: 

[1] Zektser I S, Dzhamalov R G, Safronova T I. Role of Submarine Groundwater Discharge in the Water Balance of Australia[M]. Wallingford: IAHS-AISH Publication, 1983: 209-219.
[2] Church T. An underground route for the water cycle[J]. Nature, 1996, 380: 579-580.
[3] Burnett W C, Bokuniewicz H, Huettel M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1/2): 3-33.
[4] Moore W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010, 2: 59-88.
[5] Kim G, Ryu J W, Yang H S, et al. Submarine Groundwater Discharge (SGD) into the Yellow Sea revealed by Ra-228 and Ra-226 isotopes: Lmplications for global silicate fluxes[J]. Earth and Planetary Science Letters, 2005, 237(1/2): 156-166.
[6] Swarzenski P W, Reich C, Kroeger K D, et al. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida[J]. Marine Chemistry, 2007, 104(1/2): 69-84.
[7] Hwang D W, Kim G, Lee W C, et al. The role of Submarine Groundwater Discharge (SGD) in nutrient budgets of Gamak Bay, a shellfish farming bay, in Korea[J]. Journal of Sea Research, 2010, 64(3): 224-230.
[8] Lapointe B E, O’Connell J. Nutrient-enhanced growth of Cladophora prolifera in harrington sound, bermuda: Eutrophication of a confined, phosphorus-limited marine ecosystem[J]. Estuarine, Coastal and Shelf Science, 1989, 28(4): 347-360.
[9] Boehm A B, Shellenbarger G G, Paytan A. Groundwater discharge: Potential association with fecal indicator bacteria in the Surf zone[J]. Environmental Science & Technology, 2004, 38(13): 3 558-3 566.
[10] Lee Y W, Kim G. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 309-317.
[11] Tse K C, Jiao J J. Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by Rn-222[J]. Marine Chemistry, 2008, 111(3/4): 160-170.
[12] Lee Y W, Hwang D W, Kim G, et al. Nutrient inputs from Submarine Groundwater Discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea[J]. Science of the Total Environment, 2009, 407(9): 3 181-3 188.
[13] Moore W S. High fluxes of radium and barium from the mouth of the Ganges-Brahmaputra river during low river discharge suggest a large groundwater source[J]. Earth and Planetary Science Letters, 1997, 150(1/2): 141-150.
[14] Moore W S. The subterranean estuary: A reaction zone of groundwater and sea water[J]. Marine Chemistry, 1999, 65: 111-125.
[15] Charette M A, Sholkovitz E R. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay[J]. Geophysical Research Letters, 2002, 29(10),doi:10.1029/2001GL014512.
[16] Burnett W C, Aggarwal P K, Aureli A, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods[J]. Science of the Total Environment, 2006, 367(2/3): 498-543.
[17] Moore W S, Blanton J O, Joye S B. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research—Oceans, 2006, 111(C9), doi:10.1029/2005JC003041.
[18] Beck A J, Rapaglia J P, Cochran J K, et al. Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater[J]. Marine Chemistry, 2007, 106(3/4): 419-441.
[19] Li H L, Jiao J J. Quantifying tidal contribution to submarine groundwater discharges: A review[J]. Chinese Science Bulletin, 2013, 58(25): 3 053-3 059.
[20] Xin P, Wang S S J, Robinson C, et al. Memory of past random wave conditions in submarine groundwater discharge[J]. Geophysical Research Letters, 2014, 41(7): 2 401-2 410.
[21] Xin P, Robinson C, Li L, et al. Effects of wave forcing on a subterranean estuary[J]. Water Resources Research, 2010, 46(12),doi:10.1029/2010WR009632.
[22] Smith A J. Mixed convection and density-dependent seawater circulation in coastal aquifers[J]. Water Resources Research, 2004, 40, doi:10.1029/2003wr002977.
[23] Robinson C, Li L, Prommer H. Tide-induced recirculation across the aquifer-ocean interface[J]. Water Resources Research, 2007, 43: W07428, doi:10.1029/2006WR005679.
[24] Qu W, Li H, Wan L, et al. Numerical simulations of steady-state salinity distribution and submarine groundwater discharges in homogeneous anisotropic coastal aquifers[J]. Advances in Water Resources, 2014, 74: 318-328.
[25] Wilson A M. The occurrence and chemical implications of geothermal convection of seawater in continental shelves[J]. Geophysical Research Letters, 2003, 30, doi:10.1029/2003GL018499.
[26] Konikow L F, Akhavan M, Langevin C D, et al. Seawater circulation in sediments driven by interactions between seabed topography and fluid density[J]. Water Resources Research, 2013, 49: 1 386-1 399.
[27] Wang X J, Li H L, Jiao J J, et al. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux[J]. Scientific Reports, 2015, 5: 8 814.
[28] Moore W S, Sarmiento J L, Key R M. Submarine groundwater discharge revealed by Ra-228 distribution in the upper Atlantic Ocean[J]. Nature Geoscience, 2008, 1(5): 309-311.
[29] Taniguchi M, Ishitobi T, Chen J Y, et al. Submarine groundwater discharge from the Yellow River Delta to the Bohai Sea, China[J]. Journal of Geophysical Research—Oceans, 2008, 113(C6),doi:10.1029/2007JC004498.
[30] Ma Q, Li H L, Wang X J, et al. Estimation of seawater-groundwater exchange rate: Case study in a tidal flat with a large-scale seepage face (Laizhou Bay, China)[J]. Hydrogeology Journal, 2015, 23: 265-275.
[31] Wilson J, Rocha C. Regional scale assessment of submarine groundwater discharge in Ireland combining medium resolution satellite imagery and geochemical tracing techniques[J]. Remote Sensing of Environment, 2012, 119: 21-34.
[32] Schubert M, Scholten J, Schmidt A, et al. Submarine groundwater discharge at a single spot location: Evaluation of different detection approaches[J]. Water, 2014, 6(3): 584-601.
[33] Moore W S. Large groundwater inputs to coastal waters revealed by Ra-226 enrichments[J]. Nature, 1996, 380(6 575): 612-614.
[34] Li L, Barry D A, Stagnitti F, et al. Submarine groundwater discharge and associated chemical input to a coastal sea[J]. Water Resources Research, 1999, 35(11): 3 253-3 259.
[35] Charette M A, Buesseler K O, Andrews J E. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod Estuary[J]. Limnology and Oceanography,2001, 46(2): 465-470.
[36] Kim G, Lee K K, Park K S, et al. Large Submarine Groundwater Discharge (SGD) from a volcanic island[J]. Geophysical Research Letters, 2003, 30(21),doi:10.1029/2003GL018378.
[37] Taniguchi M, Burnett W C, Smith C F, et al. Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico[J]. Biogeochemistry, 2003, 66(1/2): 35-53.
[38] Wilson A M. Fresh and saline groundwater discharge to the ocean: A regional perspective[J]. Water Resources Research, 2005, 41(2), doi:10.1029/2004WR003399.
[39] Michael H A, Charette M A, Harvey C F. Patterns and variability of groundwater flow and radium activity at the coast: A case study from Waquoit Bay, Massachusetts[J]. Marine Chemistry, 2011, 127(1/4): 100-114.
[40] Su N, Burnett W C, MacIntyre H L, et al. Natural radon and radium isotopes for assessing groundwater discharge into Little Lagoon, AL: Implications for harmful algal blooms[J]. Estuaries and Coasts, 2014, 37(4): 893-910.
[41] Garcia-Orellana J, Cochran J K, Bokuniewicz H, et al. Evaluation of Ra-224 as a tracer for submarine groundwater discharge in Long Island Sound (NY)[J]. Geochimica et Cosmochimica Acta, 2014, 141: 314-330.
[42] Rodellas V, Garcia-Orellana J, Masque P, et al. Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 3 926-3 930.
[43] Kwon E Y, Kim G, Primeau F, et al. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model[J]. Geophysical Research Letters, 2014, 41: 8 438-8 444.
[44] Lee D R. Device for measuring seepage flux in lakes and estuaries[J]. Limnology and Oceanography, 1977, 22(1): 140-147.
[45] Shinn E A, Reich C D, Hickey T D. Seepage meters and Bernoulli’s revenge[J]. Estuaries, 2002, 25(1): 126-132.
[46] Shinn E A, Reich C D, Hickey T D. Reply to comments by corbett and cable on our paper, "Seepage meters and Bernoulli’s revenge"[J]. Estuaries, 2003, 26(5): 1 388-1 389.
[47] Michael H A, Lubetsky J S, Harvey C F. Characterizing submarine groundwater discharge: A seepage meter study in Waquoit Bay, Massachusetts[J]. Geophysical Research Letters, 2003, 30,doi:10.1029/GL016000.
[48] Taniguchi M, Ishitobi T, Saeki K. Evaluation of time-space distributions of submarine groundwater discharge[J]. Ground Water, 2005, 43: 336-342.
[49] Lee C M, Jiao J J, Luo X, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in Tolo Harbour, Hong Kong[J]. Science of the Total Environment, 2012, 433: 427-433.
[50] Li H L, Boufadel M C, Weaver J W. Tide induced seawater-groundwater circulation in shallow beach aquifer[J]. Journal of Hydrology, 2008, 352(1/2): 211-224.
[51] Heiss J W, Michael H A. Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, spring-neap, and seasonal cycles[J]. Water Resources Research, 2014, 50(8): 6 747-6 766.
[52] Boufadel M C, Suidan M T, Venosa A D. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably-saturated porous media[J]. Journal of Contaminant Hydrology, 1999, 36(1/2): 1-20.
[53] Moore W S. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes[J]. Biogeochemistry, 2003, 66(1/2): 75-93.
[54] Guo Zhanrong, Huang Lei, Liu Huatai. The estimation of submarine inputs of groundwater to a coastal bay using radium isotopes[J]. Acta Geoscientia Sinica, 2008, 29: 647-652.[郭占荣, 黄磊,刘花台. 镭同位素示踪隆教湾的海底地下水排泄[J]. 地球学报, 2008, 29: 647-652.]
[55] Chanyotha S, Kranrod C, Burnett W C, et al. Prospecting for groundwater discharge in the canals of Bangkok via natural radon and thoron[J]. Journal of Hydrology, 2014, 519: 1 485-1 492.
[56] Xu B C, Xia D, Burnett W C, et al. Natural 222 Rn and 220 Rn indicate the impact of the Water-Sediment Regulation Scheme (WSRS) on submarine groundwater discharge in the Yellow River Estuary, China[J]. Applied Geochemistry, 2014, 51: 79-85.
[57] Cable J E, Burnett W C, Chanton J P, et al. Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222[J]. Earth and Planetary Science Letters, 1996, 144(3/4): 591-604.
[58] Burnett W C, Dulaiova H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements[J]. Journal of Environmental Radioactivity, 2003, 69(1/2): 21-35.
[59] Wu Z, Zhou H, Zhang S, et al. Using Rn-222 to estimate Submarine Groundwater Discharge (SGD) and the associated nutrient fluxes into Xiangshan Bay, East China Sea[J]. Marine Pollution Bulletin, 2013, 73(1): 183-191.
[60] Bokuniewicz H, Buddemeier R, Maxwell B, et al. The typological approach to Submarine Groundwater Discharge (SGD)[J]. Biogeochemistry, 2003, 66: 145-158.
[61] Su Ni. Tracing Coastal Water Mixing Processes and Submarine Groundwater Discharge by Radium Isotopes[D]. Shanghai: East China Normal University, 2013.[苏妮. 镭同位素示踪的近岸水体混合和海底地下水排泄[D]. 上海: 华东师范大学, 2013.]
[62] Moore W S. Seasonal distribution and flux of radium isotopes on the southeastern US continental shelf[J]. Journal of Geophysical Research—Oceans, 2007, 112(C10), doi:10.1029/2007JC004199.
[63] McCoy C A, Corbett D R, Cable J E, et al. Hydrogeological characterization of southeast coastal plain aquifers and groundwater discharge to Onslow Bay, North Carolina (USA)[J]. Journal of Hydrology, 2007, 339(3/4): 159-171.
[64] Ganju N K. A novel approach for direct estimation of fresh groundwater discharge to an estuary[J]. Geophysical Research Letters, 2011, 38, doi:10.1029/2011GL047718.
[65] Windom H L, Moore W S, Niencheski L F H, et al. Submarine groundwater discharge: A large, previously unrecognized source of dissolved iron to the South Atlantic Ocean[J]. Marine Chemistry,2006, 102(3/4): 252-266.
[66] Breier J A, Edmonds H N. High 226 Ra and 228 Ra activities in Nueces Bay, Texas indicate large submarine saline discharges[J]. Marine Chemistry, 2007, 103(1/2): 131-145.
[67] Beck A J, Rapaglia J P, Cochran J K, et al. Submarine groundwater discharge to Great South Bay, NY, estimated using Ra isotopes[J]. Marine Chemistry, 2008, 109: 279-291.
[68] Crusius J, Berg P, Koopmans D J, et al. Eddy correlation measurements of submarine groundwater discharge[J]. Marine Chemistry, 2008, 109: 77-85.
[69] Dulaiova H, Burnett W C, Chanton J P, et al. Assessment of groundwater discharges into West Neck Bay, New York, via natural tracers[J]. Continental Shelf Research, 2006, 26(16): 1 971-1 983.
[70] Dulaiova H, Gonneea M E, Henderson P B, et al. Geochemical and physical sources of radon variation in a subterranean estuary—Implications for groundwater radon activities in submarine groundwater discharge studies[J]. Marine Chemistry, 2008, 110(1/2): 120-127.
[71] Smith C G, Cable J E, Martin J B, et al. Evaluating the source and seasonality of submarine groundwater discharge using a radon-222 pore water transport model[J]. Earth and Planetary Science Letters, 2008, 273(3/4): 312-322.
[72] Santos I R, Dimova N, Peterson R N, et al. Extended time series measurements of submarine groundwater discharge tracers ( 222 Rn and CH 4 ) at a coastal site in Florida[J]. Marine Chemistry, 2009, 113: 137-147.
[73] Swarzenski P W, Izbicki J A. Coastal groundwater dynamics off Santa Barbara, California: Combining geochemical tracers, electromagnetic seepmeters, and electrical resistivity[J]. Estuarine Coastal and Shelf Science, 2009, 83(1): 77-89.
[74] McCoy C, Viso R, Peterson R N, et al. Radon as an indicator of limited cross-shelf mixing of submarine groundwater discharge along an open ocean beach in the South Atlantic Bight during observed hypoxia[J]. Continental Shelf Research, 2011, 31(12): 1 306-1 317.
[75] Null K A, Corbett D R, DeMaster D J, et al. Porewater advection of ammonium into the Neuse River Estuary, North Carolina, USA[J]. Estuarine, Coastal and Shelf Science, 2011, 95: 314-325.
[76] Stachelhaus S L, Moran S B, Kelly R P. An evaluation of the efficacy of radium isotopes as tracers of submarine groundwater discharge to southern Rhode Island’s coastal ponds[J]. Marine Chemistry, 2012, 130/131:49-61.
[77] Zhang Quan, Qiu Hanxue, Zhu Chenjian,et al. Study on terrestrial nitrate flux to Wanggezhuang Bay[J]. Marine Environmental Science, 2002, 21(2):14-18.[张权, 邱汉学, 祝陈坚,等. 王哥庄湾陆源硝酸盐氮输送通量研究[J]. 海洋环境科学, 2002, 21(2): 14-18.]
[78] Qiu Hanxue, Zheng Xilai, Zhang Xiaolong, et al. Numerical analysis of groundwater discharge fluxes to ocean from the Huanghe Farm area[J]. Marine Geology Letters,2003, 19(3): 28-33.[邱汉学, 郑西来, 张效龙, 等. 黄河农场地区地下水入海通量的数值分析[J], 海洋地质动态, 2003, 19(3): 28-33.]
[79] Guo Zhanrong, Huang Yipu. Estimation of submarine groundwater discharge to ocean from Xiamen Island[J]. Water Resources Research, 2003, 24(l): 28-29.[郭占荣, 黄奕普. 厦门岛地下水入海通量估算[J], 水资源研究, 2003, 24(l): 28-29.]
[80] Zhu Xinjun, Liu Guanqun, Wang Shuying, et al. Estimation of groundwater and nutrients flux from Baisha Watershed into Jiaozhou Bay[J]. Periodical of Ocean University of China, 2005, 35(l): 67-72.[朱新军, 刘贯群, 王淑英, 等. 白沙河流域地下水及营养盐向海湾输送[J]. 中国海洋大学学报, 2005, 35(l): 67-72.]
[81] Liao Xiaoqing, Liu Guanqun, Yuan Ruiqiang, et al. FEFLOW software numerical simulation of groundwater discharge flux to the sea from the Yellow River Farm area[J]. Advances in Marine Science, 2005, 23(4): 446-451.[廖小青, 刘贯群, 袁瑞强, 等. 黄河农场地区地下水入海量FEFLOW软件数值模拟[J]. 海洋科学进展, 2005, 23(4): 446-451.]
[82] Liu Guanqun, Ye Yuling, Yuan Ruiqiang, et al. Transport of groundwater and nutrients from land into Jiaozhou Bay[J]. Marine Environmental Science, 2007, 26(6): 510-513.[刘贯群, 叶玉玲, 袁瑞强, 等. 近年胶州湾陆源SGD及其营养盐输送[J]. 海洋环境科学, 2007, 26(6) : 510-513.]
[83] Guo Zhanrong, Huang Lei, Liu Huatai. The estimation of submarine inputs of groundwater to a coastal bay using radium isotopes[J]. Acta Geoscientica Sinica, 2008, 29: 647-652.[郭占荣, 黄磊,刘花台. 镭同位素示踪隆教湾的海底地下水排泄[J]. 地球学报, 2008, 29: 647-652.]
[84] Su Ni, Zhang Lei, Zhang Yaoling, et al. Groundwater discharge in coastal zones[J]. Hydrogeology and Engineering Geology, 2009, 3: 45-50.[苏妮, 张磊, 张耀玲, 等. 沿岸地下水排放通量[J]. 水文地质工程地质, 2009, 3: 45-50.]
[85] Guo Zhanrong, Huang Lei, Yuan Xiaojian, et al. Estimating submarine groundwater discharge to the Jiulong River estuary using Ra isotopes[J]. Advances in Water Science, 2011, 22(1): 118-125.[郭占荣, 黄磊, 袁晓健, 等. 用镭同位素评价九龙江河口区的地下水输入[J]. 水科学进展, 2011, 22(1): 118-125.]
[86] Gu H, Moore W S, Zhang L, et al. Using radium isotopes to estimate the residence time and the contribution of Submarine Groundwater Discharge (SGD) in the Changjiang effluent plume, East China Sea[J]. Continental Shelf Research, 2012, 35: 95-107.
[87] Xu B C, Burnett W C, Dimova N, et al. Hydrodynamics in the Yellow River Estuary via radium isotopes: Ecological perspectives[J]. Continental Shelf Research, 2013, 66: 19-28.
[88] Peterson R N, Burnett W C, Taniguchi M, et al. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River Delta, China[J]. Journal of Geophysical Research—Oceans, 2008, 113(C9),doi:10.1029/2008JC004776.
[89] Guo Zhanrong, Ma Zhiyong, Yuan Xiaojie, et al. Tracing Submarine groundwater discharge and associated nutrient fluxes into Jiaozhou Bay by continuous 222 Rn measurements[J]. Earth Science—Journal of China University of Geosciences, 2013, 38(5): 1 073-1 080.[郭占荣, 马志勇, 袁晓婕, 等. 采用222Rn示踪胶州湾的海底地下水排泄及营养盐输入[J]. 地球科学——中国地质大学学报, 2013, 38(5): 1 073-1 080.]
[90] Guo Zhanrong, Li Kaipei, Yuan Xiaojie, et al. Assessment of submarine groundwater discharge into the Wuyuan Bay via continuous Radon-222 measurements[J]. Advances in Water Science, 2012, 23(2): 263-270.[郭占荣, 李开培, 袁晓婕, 等. 用氡-222评价五缘湾的地下水输入[J]. 水科学进展, 2012, 23(2): 263-270.]
[91] Huang Lei. Researeh on Groundwater Discharge into Jiulongjiang Estuary[D]. Xiamen: Xiamen University, 2009.[黄磊. 九龙江河口区的地下水输入研究[D]. 厦门: 厦门大学, 2009.]
[92] Luo X, Jiao J J, Moore W S, et al. Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production[J]. Marine Pollution Bulletin, 2014, 82(1/2): 144-154.
[93] Su N, Du J Z, Moore W S, et al. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226 Ra[J]. Science of the total environment, 2011, 409(19): 3 909-3 918.
[94] Ji T, Du J Z, Moore W S, et al. Nutrient inputs to a Lagoon through submarine groundwater discharge: The case of Laoye Lagoon, Hainan, China[J]. Journal of Marine Systems, 2013, 111/112: 253-262.
[95] Liu Q, Dai M, Chen W, et al. How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system?[J]. Biogeosciences, 2012, 9(5): 1 777-1 795.
[96] Garrison G H, Glenn C R, McMurtry G M. Measurement of submarine groundwater discharge in Kahana Bay, O’ahu, Hawai’i[J]. Limnology and Oceanography, 2003, 48(2): 920-928.
[97] Charette M A, Buesseler K O. Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake bay (Elizabeth River)[J]. Limnology and Oceanography, 2004, 49(2): 376-385.
[98] Hu C, Muller-Karger F E, Swarzenski P W. Hurricanes, submarine groundwater discharge, and Florida’s red tides[J]. Geophysical Research Letters, 2006, 33(11),doi:10.1029/2005GL025449.
[99] Lee Y W, Kim G. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer[J]. Estuarine, Coastal and Shelf Science, 2007, 71: 309-317.
[100] Shaw T J, Moore W S, Kloepfer J, et al. The flux of barium to the coastal waters of the southeastern USA: The importance of submarine groundwater discharge[J]. Geochimica et Cosmochimica Acta, 1998, 62: 3 047-3 054
[101] Bone S E, Charette M A, Lamborg C H, et al. Has submarine groundwater discharge been overlooked as a source of mercury to coastal waters?[J]. Environmental Science & Technology, 2007, 41(9): 3 090-3 095.
[102] Santos I R, Burnett W C, Dittmar T, et al. Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary[J]. Geochimica et Cosmochimica Acta, 2009, 73:1 325-1 339.
[103] Burnett W C, Wattayakom G, Taniguchi M, et al. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand[J].Continental Shelf Research, 2007, 27: 176-190.
[104] Li Hailong, Wan Li, Jiao Jiujiu. Hot issues in the study of coastal hydrogeology[J]. Advances in Earth Science, 2011, 26(7): 685-694.[李海龙, 万力, 焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011, 26(7): 685-694.]
[105] Committee on Chinese Groundwater Science. Opportunities and Challenges in Chinese Groundwater Science[M]. Beijing: Science Press, 2009.[中国地下水科学战略研究小组.中国地下水科学的机遇与挑战[M].北京:科学出版社,2009.]
[106] Liu Huatai, Guo Zhanrong. A review on submarine groundwater discharge[J]. Advances in Earth Science, 2014, 29(7): 774-785.[刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7): 774-785.]
[107] Qin Ronggao, Cao Guangzhu, Wu Yanqing. Review of the study of groundwater flow and solute transport in heterogeneous aquifer[J]. Advances in Earth Science, 2014, 29(1): 30-41.[覃荣高, 曹广祝, 仵彦卿. 非均质含水层中渗流与溶质运移研究进展[J]. 地球科学进展, 2014, 29(1): 30-41.]

[1] 许 妍, 曹 可, 李 冕, 许自舟. 海岸带生态风险评价研究进展[J]. 地球科学进展, 2016, 31(2): 137-146.
[2] 张华, 韩广轩, 王德, 薛钦昭, 骆永明. 基于生态工程的海岸带全球变化适应性防护策略[J]. 地球科学进展, 2015, 30(9): 996-1005.
[3] 王金平, 张志强, 高峰, 王文娟. 英国海洋科技计划重点布局及对我国的启示[J]. 地球科学进展, 2014, 29(7): 865-873.
[4] 罗时龙, 蔡锋, 王厚杰. 海岸侵蚀及其管理研究的若干进展[J]. 地球科学进展, 2013, 28(11): 1239-1247.
[5] 李海龙,万力,焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011, 26(7): 685-694.
[6] 高抒. 亚洲地区的流域—海岸相互作用:APN近期研究动态[J]. 地球科学进展, 2006, 21(7): 680-686.
[7] 吴涛,康建成,王芳,郑琰明. 全球海平面变化研究新进展[J]. 地球科学进展, 2006, 21(7): 730-737.
[8] Ernan Rustiadi,Dyah R. Panuju,B.H. Trisasongko,Ruchyat Deni Djakapermana. 海啸灾害后印度尼西亚班达阿齐市的土地覆盖变化与海岸带区域规划[J]. 地球科学进展, 2006, 21(2): 192-200.
[9] 李晓兵. 国际土地利用—土地覆盖变化的环境影响研究[J]. 地球科学进展, 1999, 14(4): 395-400.
[10] 李玉成,王苏民,黄耀生. 气候环境变化的湖泊沉积学响应[J]. 地球科学进展, 1999, 14(4): 412-416.
[11] 李明,施永辉. 欧洲陆一海相互作用研究(ELOISE)科学计划及研究领域[J]. 地球科学进展, 1996, 11(5): 475-480.
[12] 李凡. 海岸带陆海相互作用(LOICZ)研究及我们的策略[J]. 地球科学进展, 1996, 11(1): 19-23.
阅读次数
全文


摘要