地球科学进展 ›› 2017, Vol. 32 ›› Issue (2): 160 -173. doi: 10.11867/j.issn.1001-8166.2017.02.0160

研究论文 上一篇    下一篇

气温增暖与趋冷变化阶段江淮汛期气旋气候特征对比研究
王坚红 1, 丁晓敏 1, 薛峰 2, 苗春生 1   
  1. 1.南京信息工程大学, 气象灾害预报预警与评估协同创新中心/气象灾害教育部重点实验室,江苏 南京 210044;
    2.中国气象局国家气象中心, 北京 100081
  • 收稿日期:2016-10-30 修回日期:2016-12-20 出版日期:2017-02-20
  • 基金资助:

    国家自然科学基金面上项目“海洋中尺度涡旋动力结构与维持机制研究”(编号:41276033); 江苏省科技支撑项目“基于耦合数值模式的江苏海洋综合要素预报预警技术研究与应用”(编号:BE2014729)资助

A Comparative Research on Climatic Characteristics of Jianghuai Cyclones in Rainfall Season between Warming and Cooling Stages

Wang Jianhong 1, Ding Xiaomin 1, Xue Feng 2, Miao Chunsheng 1   

  1. 1.Nanjing University of Information Science & Technology, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing 210044, China;
    2.National Meteorological Center of China Meteorological Administration, Beijing 100081, China
  • Received:2016-10-30 Revised:2016-12-20 Online:2017-02-20 Published:2017-02-20
  • About author:First author:Wang Jianhong(1956-), female, Shanghai City, Professor. Research areas include atmospheric and oceanographic dynamics.E-mail:1597706505@qq.com
  • Supported by:

    Project supported by the National Natural Science Foundation of China “ The dynamic structures and maintaining mechanisms of oceanic meso-scale eddies” (No.41276033); The Jiangsu Provincial Science & Technology Supporting Program “ Research and application of the forecast and warning techniques on Jiangsu oceanic elements based on the coupling numerical models ” (No.BE2014729)

对1948—2014年67年的江淮地区5~7月气温序列,利用EOF、功率谱和非线性映射法进行气候阶段客观划分,可分为3个时长近似的气候阶段:气温趋势下降阶段(1948—1970年)、气温趋势上升阶段(1971—1994年)和气温趋势缓升阶段(1995—2014年),它们的气候特征可用特定气温指数定量表达。其次,对各阶段江淮气旋统计特征与各阶段气温变化趋势进行对比, 结果显示,气旋年平均发生频数,生命期大于48 h的气旋,各类气旋数量 (深厚型,浅薄型和底层型),以及气旋路径(纬向型,经向型和打转型)的特征演变,均有明显响应阶段性气温变化的表现,阶段气温的趋冷抑制江淮气旋的活动,而阶段气温的增暖促进了气旋的发展、维持与活跃,并引导气旋位置的北进。对气旋结构特征的合成分析显示, 在气旋结构中的气旋中心强度、温度梯度、气旋急流最大风速, 气旋水汽通量通道的强度、长度、位置以及表征气旋斜压性的气旋冷暖气团的强度、厚度和北进南退位置等特征的演变, 均与阶段内环境气温的趋冷、增暖、缓升相对应。这些结果清晰显示在环境气温下降趋冷阶段,气温变化减弱了气旋的结构强度, 抑制了气旋的活跃性, 在环境气温增温和缓升阶段,气温变化加强了气旋结构的稳定成长与增强,并维持了气旋的活跃性。

By EOF, Power spectrum and nonlinear mapping methods, the temperature time series of May to July in Jianghuai river basins from 1948-2014 (67 years) were objectively divided into several climate stages. The time series were divided into three climate stages with similar lengths: the stage with its air temperature trend going downwards stage (1948-1970); the stage with its air temperature trend going upwards (1971-1994) and the stage with its air temperature trend going gentle upwards (1995-2014). Their climate characteristics can be quantified by a special climate index. Then, the statistic characteristics of Jianghuai cyclones in the three climate stages were compared with the cooling or warming trends. The results showed that characteristic evolutions of the frequency of yearly average of Jianhuai cyclones, the cyclones with their life cycles in the area longer than 48h, the cyclones with three types of thickness, shallow and bottom shapes classified according to the cyclone height, the cyclones with three kinds of zonal, meridional, and circular trajectory, responded to the temperature changing trends in the three climate stages. The cooling trends of the stage temperature restrained the activity of Jianghuai cyclones, and the warming trends of the stage temperature promoted the cyclone’s development, maintaining, activity, and also led cyclone moving towards to north further. The composite analysis of cyclone structures showed that the evolution characteristics in the center intensity, temperature grads, the maxima velocity of jet of the cyclones, and the intensity, length and position of the vapor flux passage of the Jianghuai cyclones, also the intensity, thickness, the positions of the warm and cold air masses within the cyclones, all responded to the trend change of stage temperature including cooling, warming and gentle warming. The results show clearly that temperature cooling reduces the intensity of cyclone structures and restrains the activity of cyclones in the temperatures trend down stage. The temperature warming enhances the stable development and strengthening of cyclone structure,and maintains the activity of cyclones in the temperature warming stages.

中图分类号: 

[1] McCabe G J, Clark M P, Serreze M C.Trends in Northern hemisphere surface cyclone frequency and intensity[J]. Journal of Climate,2001, 14(12):2 763-2 768.
[2] Orsolini Y J, Sorteberg A. Projected changes in Eurasian and Arctic summer cyclones under global warming in the Bergen climate model[J]. Atmospheric and Ocean Science Letters,2009, 2(1):62-67.
[3] Lambert S J, Fyfe J C. Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise[J].Climate Dynamics, 2006, 26(7):713-728.
[4] Akperov M G, Mokhov I I. Estimates of the sensitivity of cyclonic activity in the troposphere of extra-tropical latitudes to changes in the temperature regime[J]. Izvestiya, Atmospheric and Oceanic Physics,2013, 49(2):113-120.
[5] Zappa G, Len C S, Kevin I H, et al. A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models[J]. Journal of Climate,2013, 26:5 846-5 862, doi:10.1175/JCLI-D-12-00573.1
[6] Akperov M, Mokhov I, Rinke A, et al. Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate modelsimulations[J]. Theoretical and Applied Climatology,2015, 122:85-96,doi: 10.1007/s00704-014-1272-2.
[7] Zhang Ying, Wang Huijun. A projection of future climate change over the western North Pacific related to typhoon activities[J]. Acta Meteorologica Sinica,2010, 68(4):539-549.
[张颖,王会军.全球变暖情境下西北太平洋地区台风活动背景场气候变化的预估[J]. 气象学报,2010,68(4):539-549.]
[8] Ma Liping,Chen Lianshou,Xu Xiangde. On the characteristics of correlation between global tropicalcyclone activities and global climate change[J].Journal of Tropical Meteorology,2006,22(2):147-154.
[马丽萍,陈联寿,徐祥德.全球热带气旋活动与全球气候变化相关特征[J].热带气象学报,2006,22(2):147-154.]
[9] Tian Rongxiang. Influence of clmiatic warm ing in Southern Hem isphere on tropical cyclone of northwestern Pacific Ocean[J].Journal of Natural Disasters, 2005, 14(4):25-29.
[田荣湘.南半球气候变暖对西北太平洋热带气旋的影响[J].自然灾害学报,2005, 14(4):25-29.]
[10] Zhao Haikun. Study on the Mechanism of Tropical Cyclone Activity Change over the Western North Pacific under the Background of Global Warming[D]. Nanjing: Nanjing University of Information Science & Technology, 2012.
[赵海坤.全球变暖背景下西北太平洋热带气旋活动变化机理研究[D].南京:南京信息工程大学,2012.]
[11] Wang Chao. The Influence of Global Warming on the Tropical Cyclone Intensity over the Western North Pacific[D].Nanjing: Nanjing University of Information Science & Technology, 2012.
[王超.全球变暖对西太平洋热带气旋强度的影响[D]. 南京:南京信息工程大学,2012.]
[12] Lei Xiaotu, Xu Ming, Ren Fumin. Research progress on the effect of global warming on Typhoon activity[J]. Journal of Meteorology,2009,67(5):679-688.
[雷小途, 徐明,任福民.全球变暖对台风活动影响的研究进展[J]. 气象学报,2009,67(5):679-688.]
[13] Miao Chunsheng, Xu Fangzhu, Wang Jianhong, et al.Huai valley under two greenhouse gas emissions scenarios[J]. Chinese Journal of Atmospheric Sciences,2016,40(2):257-270.
[苗春生,徐方姝,王坚红,等.两种温室排放情景下中国汛期江淮暴雨低涡特征研究[J].大气科学,2016,40(2):257-270].
[14] Wang Jianhong, Niu Dan, Ren Shuyuan, et al. Comparative study ondevelopmeng of different deep Jianghuai Rivers cyclones entering the sea and the influence of environment factors[J].Journal of Tropical Meteorology,2015,31(6): 744-756.
[王坚红,牛丹,任淑媛,等.不同深厚气旋入海发展中环境因子作用对比研究[J]. 热带气象学报,2015,31(6): 744-756.]

[1] 刘凯,聂格格,张森. 中国 19512018年气温和降水的时空演变特征研究[J]. 地球科学进展, 2020, 35(11): 1113-1126.
[2] 康文敏,蔡芫镔,郑慧祯. 福州城市地表温度时空变化与贡献度研究[J]. 地球科学进展, 2020, 35(1): 88-100.
[3] 李江峰, 蔡晓军, 王文, 李倩文, 雷彦森. 偏最小二乘回归在水汽和地面气温多模式集成预报中的应用研究[J]. 地球科学进展, 2018, 33(4): 404-415.
[4] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[5] 贾佳, 胡泽勇. 中国不同等级高温热浪的时空分布特征及趋势[J]. 地球科学进展, 2017, 32(5): 546-559.
[6] 陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.
[7] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[8] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[9] 彭志兴, 周纪, 李明松. 基于地面观测的异质性下垫面像元尺度地表温度模拟研究进展[J]. 地球科学进展, 2016, 31(5): 471-480.
[10] 王晓青,刘健,王志远. 过去2000年中国区域温度模拟与重建的对比分析[J]. 地球科学进展, 2015, 30(12): 1318-.
[11] 黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.
[12] 徐自为,刘绍民,徐同仁,丁闯. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889.
[13] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[14] 苗爱梅,武捷,贾利冬. 1958—2008年山西气温变化的特征及趋势研究[J]. 地球科学进展, 2010, 25(3): 264-272.
[15] 康国婷,阎广建,任华忠,王颢星,钱永刚. 田块尺度作物辐射温度获取方法对比研究[J]. 地球科学进展, 2009, 24(7): 784-792.
阅读次数
全文


摘要