地球科学进展 ›› 1995, Vol. 10 ›› Issue (3): 267 -272. doi: 10.11867/j.issn.1001-8166.1995.03.0267

干旱气候变化与可持续发展 上一篇    下一篇

大洋钻探与全球变化(二)——从海洋角度研究第四纪古全球变化
翦知泯   
  1. 同济大学海洋地质开放实验室  上海  200092
  • 收稿日期:1995-02-21 出版日期:1995-06-01
  • 通讯作者: 翦知泯
  • 基金资助:

    国家自然科学基金项目“西北太平洋晚第四纪三维空间的古水团研究尝试”(编:49406067)资助.

ODP AND GLOBAL CHANGE(II)—STUDYING QUATERNARY PAST GLOBAL CHANGE FROM THE VIEW OF SEA

Jian Zhimin   

  1. Laboratory of Marine Geology,Tongji University,Shanghai   200092
  • Received:1995-02-21 Online:1995-06-01 Published:1995-06-01

海洋在第四纪全球气候和环境的变化中起着至关重要的作用。一方面,海洋沉积记录了大量第四纪古全球变化的信息,特别是可提供古全球变化中高分辨率的短期气候事件的记录;另一方面,无论是全球性大洋环流、生物和化学的变化,还是区域性西太平洋边缘海浅水陆架的出没,这些海洋事件都可能是许多第四纪古全球变化现象的原因之所在。因此,从海洋角度研究第四纪古全球变化,已成为当前古全球变化和国际古海洋学研究的重点。在这方面,深海钻探(DSDP)/大洋钻探(ODP)以及相关的海洋研究计划做出了巨大贡献。

The sea which covers 71% of the Earth's surface plays a very important role in Quaternary changes of the Earth's climate and environment. Firstly,marine sediments contain a lot of information on Quaternary past global change,providing high-resolution records of short-term climatic events such as Younger Dryas event. Secondly, marine events, being changes in the circulation,biololgy and chemistry of the global ocean,or regional changes of the eustasy-induced emergence and submergence of shallow-water shelves in the western Pacific marginal seas, all can be causes of many phenomena of the Quaternary global changes. Therefore,Quaternry past global change studies from the marine aspect have become one of foci of the current international endeavor in global change science and paleoceanography. Great contribution to the field have been made by the Deep Sea Drilling (DSDP)/Ocean Drilling Program (ODP) and other related marine science programs.

[1] Joint Oceanographic Institutions Inc.Ocean Drilling Program (Long Range Plan 1980-2002). Washington D C,1990. 119pp.
[2] Pisias N,Jansen E et al IMAGES:International Marine Global Change Study. Switzerland,1994. 37pp.
[3] Shackleton N J,Opdyke N D. Oxygen isotope and paleomagnetic evidence for early northern hemisphere glaciation. Nature,1977,270:216-219.
[4] Shackleton N J,Backman J et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature,1984,307:620-623.
[5] Backman J. Pliocene biostratigraphy of DSDP 111 and 116 from the northern Atlantic Ocean and of northern hemisphere glaciation. Stockholm Contribution in Geology, 1979,33:115-137.
[6] Wang L. Sea surface temperature history of the low latitude western Pacific during the last 5. 3 million years. Palaeogeography, Palaeoclimatology, Palaeoecology,1994,108 (3/4) : 379-436.
[7] Haq B U,Hardenbol J,Vail P R.Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change. In:Sea Level Changes-An Integrated Approach. SEPM Special Publications,1988,42:71-108.
[8] Berger W H, Bickert T et al. Quaternary oxygen isotope record of pelagic foraminifers:Site 606, Ontong Java Plateau. Proceedings of the Ocean Drilling Program,Scientific Results,1993,130:363-380.
[9] Shipboard Scientific Party. Proceedings of the Ocean Drilling Program,Initial Results,1992,138:1-674.
[10] Berger W H, Bickert T et al .The certral mystery of the Quaternary ice age: A view from the South Pacific. Oceanus, 1993/94,36(4):53-56.
[11] Broecker W S,Andree M et al. The chronology of the last deglaciation:Implications to the cause of the Younger Dryas Event.Paleoceanography,1988,39(1):1-19.
[12] Harvey L D D. Modelling the Younger Dryas. Quaternary Science Review,1989,8:137-149.
[13] 王律江,卞云华,汪品先.南海北部末次冰消期及快速气候回返事件.第四纪研究,1994,1:1-12.
[14] Kudrass H R,Erlenkeuser H et al.Global nature of the Younger Dryxs Cooling Event inferred from oxygen isotope data from Sulu Sea cores.Nature,1991,349:406-409.
[15] Broecker W S. The glacial world according to Wally. Palisades:Lamont-Doherty Geological Observatory.  1992.178PP.
[16] Barnola J M,Raynaud D et al. Vostok ice core provides160000-year record of atmospheric CO2. Nature,1987,329: 408-414.
[17] Boyle E A. Quaternary deepwater paleoceanography. Science,1990, 274:863-869.
[18] Thunell R C,Miao Q et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea:Productivity variations and surface water pCO2. Paleoceanography, 1992,7(2):143-162.
[19] Broecker W S,Peng T H. The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change. Global Biogeochemical Cycles, 1987,1:15-29.
[20] Westbroed P,Brown C W et al. A model system approach to biological climate forcing—The example of Emiliania huxleyi. Global and Planetary Change, 1993,8(1/2):27-46.
[21] Broecker W S,Denton G H. The role of ocean-atmosphere reorganizations in glacial cycles. Quaternary Science Review,1990, 9:305-341.
[22] Duplessy J C,Shackleton N J et al. Deepwater source variations during the last climatic cycles and their impact on the global deepwater circulation. Paleoceanography,1988,3(3):343-360.
[23] Jian Z,Wang L. Late Quaternary benthic foraminifera and deepwater paleoceanography in the South China Sea. Marine Micropaleontology.1995(in press).
[24] 汪品先.西太平洋边缘海对我国干旱化影晌的初步探讨.第四纪研究,1995(待刊).
[25] Liu T,Ding Z. Stepwise cooupling of monsoon circulation to global ice volume variations during the late Cenozoic. Global and Planetary Change,1993,7(1-3):119-130.
[26] Dersch M,Stein R. Late Cenozoic records of eolian quartz flux in the Sea of Japan(ODP Leg 128,Sites798 and 799) and Paleoclimate in Asia.Palaeogeography,Palaeoclimatology,Palaeoecology,1994,108(3/4):523-536.
[27] Sarthein M,Pflaumann U,Wang P X,Wong H K(Editors). Preliminary report on Sonne-95 Cruise "Monitor Monsoon" to the South China Sea. Berichte-Reports , Kiel,1994,68:1-225.

[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[3] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[4] 拓守廷,温廷宇,张钊,李阳阳. 大洋钻探计划运行的国际经验及对我国的启示[J]. 地球科学进展, 2021, 36(6): 632-642.
[5] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[6] 刘雷钧, 何建刚, 涂海波, 郎骏健, 柳林涛. 载体垂向扰动对轴对称型金属弹簧海洋重力仪的影响[J]. 地球科学进展, 2021, 36(5): 520-527.
[7] 吴园涛, 段晓男, 沈刚, 殷建平, 张偲. 强化我国海洋领域国家战略科技力量的思考与建议[J]. 地球科学进展, 2021, 36(4): 413-420.
[8] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[9] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[10] 冷疏影,汪建君,张亮,连展,王清. 2020年度海洋科学与极地科学基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1189-1200.
[11] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[12] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[13] 范峥,李宏,刘向文,徐芳华. 基于局地集合变换卡尔曼滤波的全球海洋资料同化系统设计及算法加速[J]. 地球科学进展, 2019, 34(5): 531-539.
[14] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[15] 冷疏影,李薇,汪建君,邵伟增,李刚,邢荣莲. 2019年度海洋科学与极地科学基金项目评审与资助成果分析[J]. 地球科学进展, 2019, 34(11): 1202-1211.
阅读次数
全文


摘要