地球科学进展 ›› 2014, Vol. 29 ›› Issue (2): 306 -314. doi: 1001-8166(2014)02-0306-09

上一篇    

海底岩石地球化学研究中的#cod#x0201c;大数据#cod#x0201d;#cod#x02014;#cod#x02014;PetDB及其应用
余星( )   
  1. 国家海洋局第二海洋研究所,国家海洋局海底科学重点实验室, 浙江 杭州 310012
  • 收稿日期:2013-08-26 修回日期:2014-02-13 出版日期:2014-03-10
  • 基金资助:
    感谢哥伦比亚大学拉蒙特#cod#x02014;多尔蒂地球观测中心IEDA研究小组Leslie Hsu博士提供的最新IEDA和PetDB应用推广情况统计资料,以及有关PetDB数据库方面的有益讨论。感谢匿名评审人对本文提出的宝贵修改意见。;[HT6SS][ZK(]浙江省自然科学基金青年项目#cod#x0201c;深海橄榄岩蛇纹石化过程中的元素迁移机制研究#cod#x0201d;(编号:LQ12D02001);海洋公益性行业科研专项#cod#x0201c;国际海底资源开发与公海保护区选划技术支持系统及应用示范#cod#x0201d;(编号:201005003)资助.

The Big data tool for seabed Petrogeochemistry research-PetDB and its Application in Geoscience

Xing YU   

  1. Key Laboratory of Submarine Geosciences,Second Institute of Oceanography, SOA, Hangzhou 310012,China
  • Received:2013-08-26 Revised:2014-02-13 Online:2014-03-10 Published:2014-02-10

PetDB是目前海洋科学及地学领域最重要的基础数据库资源之一,是海底岩石地球化学数据库的旗舰,它为海洋地质和岩石地球化学专业人员提供了最好的#cod#x0201c;大数据#cod#x0201d;支持。PetDB综合了全球海底岩石、矿物和包裹体等的元素化学数据、同位素数据和矿物学数据,数据收录全面、完整、更新快,数据格式规范、统一,数据组织结构清晰,数据查询、输出方便快捷,用户体验感强。将面向国内同行详细介绍海底岩石地球化学#cod#x0201c;大数据#cod#x0201d;工具#cod#x02014;#cod#x02014;PetDB数据库,包括PetDB的设计理念、使用方法和应用特色,旨在抛砖引玉,倡导基础数据的及时积累和整理,为建立自主的研究型数据库奠定基础,为迎接#cod#x0201c;大数据#cod#x0201d;时代的到来做好充分的准备。

PetDB is one of the most important basic databases in earth science and marine science. It is also the flagship for seabed petrogeochemical databases, which benefits marine geologists. PetDB combines nearly all the data of rocks from ocean floor, including petrological, mineralogical and geochemical data for rocks, glass, minerals and inclusions. For geochemical data it often contains the major elements, trace elements and isotopic ratios. The data in the database is integrated, well organized, easy for quiry and download. This quite popular and widely used database for petrology of ocean floor#cod#x02014;PetDB, which can be treated as a BigData tool in petrology, including the ideas to design the database, use instructions as well as its features, is introduced to domestic colleagues. It is well hoped that more and more petrogeochemists will pay more attention to and take interest in the database construction and BigData analysis, which is quite helpful in discussing new issues and performing scientific research.

中图分类号: 

图1 PetDB与其他相关数据库的组织关系图
Fig.1 Relationship diagram for PetDB and other relevant databases
图2 PetDB收录的岩石样品位置分布图(2013年7月来源于GeoMapApp)
Fig.2 Sample locations for those included in PetDB (by July 2013, from GeoMapApp)
表1 PetDB及相关岩石地球化学数据库信息表(截至2013年8月)
Table 1 General Information for PetDB and similar databases (by August 2013)
[1] Lynch C. Big data: How do your data grow?[J]. Nature, 2008, 455(7 209):28-29.
[2] Mayer-Schnberger V, Cukier K. Big Data: A Revolution that Will Transform How We Live, Work, and Think[M]. Boston: Eamon Dolan/Houghton Mifflin Harcourt,2013.
[3] Lohr S. The Age of Big Data[N/OL]. New York Times, 2012-02-11.[2013-12-29]..
URL    
[4] Hey T,Tansley S,Tolle K. The Fourth Paradigm: Data-intensive Scientific Discovery[M]. Washington: Microsoft Research,2009.
[潘教峰,张晓林,译. 第四范式:数据密集型的科学发现[M]. 北京: 科学出版社, 2012.]
[5] Lehnert K. The PetDB data collection: Impact on science[C]∥2007 GSA Denver Annual MeetingAbstracts. Colorado:Colorado Convention Center,2007.
[6] Lehnert K, Su Y, Langmuir C H,et al. A global geochemical database structure for rocks[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(1): 1012, doi:10.1029/1999GC000026.
[7] Walker J D, Lehnert K A, Hofmann A W,et al. EarthChem: International Collaboration for Solid Earth Geochemistry in Geoinformatics[C].Florida Avenue, NW: AGU Fall Meeting 2005, 2005.
[8] Sarbas B, Nohl U. The GEOROC database#cod#x02014;A decade of "online geochemistry"[J]. Geochimica et Cosmochimica Acta Supplement, 2009, 73:1 158.
[9] Sarbas B, Nohl U, Busch U,et al. The geochemical database GEOROC#cod#x02014;What#cod#x02019;s the News[C]//Geophysical Research Abstracts. Vienna, Austria: European Geosciences Union 2006, 2006.
[10] Schewe I. The PANGAEA Database-Get Order in Your Scientific Primary Data[C]. Carvoeiro: HERMES 3rd Annual Meeting,2008, 3: 4.
[11] Schindler U, Diepenbroek M, Grobe H. PANGAEA#cod#x02014;Research data enters scholarly communication[C]∥EGU General Assembly Conference 2012,Abstracts. Vienna, Austria: EGU,2013,14: 13 378.
[12] Ichiyama Y, Hanafusa Y, Soma S. The #cod#x0201c;GANSEKI#cod#x0201d; database of ocean-floor rock samples[J]. Journal of Geology Society Japan, 2011, 117(10):579-584.
[市山祐司, 華房康憲, 相馬伸介. 深海底岩石試料データベース「GANSEKI」の紹介[J]. 地質学雑誌, 2011, 117(10):579-584.]
[13] Spear F S, Hallett B, Pyle J M, et al. MetPetDB: A database for metamorphic geochemistry[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(12): Q12005,doi: 10.1029/2009GC002766.
[14] Walker J D, Bowers T D, Black R A, et al. A geochemical database for western North American volcanic and intrusive rocks (NAVDAT)[J]. Special Papers-Geological Society of America, 2006,397:61.
[15] Carlson R W, Walker D, Black R,et al. NAVDAT#cod#x02014;A western north american volcanic and intrusive rock geochemical database[C]//GSA Annual Meeting Abstracts. Boston: Geological Society of America, 2001.
[16] Saal A E, Hauri E H, Langmuir C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth#cod#x02019;supper mantle[J]. Nature, 2002, 419(6 906):451-455.
[17] Herzberg C, Asimow P D, Arndt N, et al. Temperatures in ambient mantle and plumes: Constraints from basalts,picrites, and komatiites[J]. Geochemistry, Geophysics, Geosystems, 2007,8(2): Q02006,doi:10.1029GC001390.
[18] Salters V J, Stracke A. Composition of the depleted mantle[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(5): Q05B07,doi: 10.1029/2003GC000597.
[19] Thirlwall M F, Gee M, Taylor R N, et al. Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios[J]. Geochimica et Cosmochimica Acta,2004, 68(2):361-386.
[20] Weyer S, M#cod#x000fc;nker C, Mezger K. Nb/Ta, Zr/Hf and REE in the depleted mantle: Implications for the differentiation history of the crust-mantle system[J].Earth and Planetary Science Letters, 2003, 205(3):309-324.
[21] Cipriani A, Brueckner H K, Bonatti E,et al. Oceanic crust generated by elusive parents: Sr and Nd isotopes in basalt-peridotite pairs fromthe Mid-Atlantic Ridge[J]. Geology, 2004, 32(8): 657-660.
[22] Spiegelman M, Kelemen P B. Extreme chemical variability as a consequence of channelized melt transport[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(7): 1 055, doi: 10.1029/2002GC000336.
[23] van de Flierdt T, Frank M, Halliday A N, et al. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget#cod#x02014;A combined Pb-Hf-Nd isotope approach[J]. Earth and Planetary Science Letters, 2004, 222(1):259-273.
[24] Yamagishi Y, Katsuhiko S, Hajimu T, et al. Visualization of geochemical data for rocks and sediments in Google Earth: Development of a data converter application for geochemical and isotopic data sets in database systems[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q3016,doi: 10.1029/2010GC003490.
[25] Rauch J N. Global distributions of Fe, Al, Cu, and Zn contained in Earth#cod#x02019;s derma layers[J]. Journal of Geochemical Exploration, 2011,110(2):193-201.
[26] Rubin K H, Sinton J M. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions[J]. Earth and Planetary Science Letters, 2007,260(1/2):257-276.
[27] Class C, Goldstein S L. Evolution of helium isotopes in the Earth#cod#x02019;s mantle[J]. Nature, 2005,436(7 054):1107-1112.
[28] Ballentine C J, Marty B, Sherwood Lollar B, et al. Neon isotopes constrain convection and volatile origin in the Earth#cod#x02019;s mantle[J]. Nature, 2005,433(7 021):33-38.
[29] Carbotte S M, Small C, Donnelly K. The influence of ridge migration on the magmatic segmentation of mid-ocean ridges[J]. Nature, 2004, 429(6 993):743-746.
[30] Escart#cod#x000ed;n J, Smith D K, Cann J, et al. Central role of detachment faults in accretion of slow-spreading oceaniclithosphere[J]. Nature, 2008,455(7 214):790-794.
[31] Sharp Z D, Barnes J D, Brearley A J, et al. Chlorine isotope homogeneity of the mantle, crust andcarbonaceous chondrites[J]. Nature,2007,446(7 139):1062-1065.
[32] Wang Pinxian. Oceanography from inside the ocean[J]. Advances in Earth Science, 2013, 28(5): 517-520.
[汪品先. 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28(5): 517-520.]
[33] Yao Yupeng. Current workforce pattern of the geological basic research in China#cod#x02014;Based on the statistics of the proposals for the National Natural Science Foundation of China[J]. Advances in Earth Science, 2012, 27(5): 581-588.
[姚玉鹏. 地质学基础研究队伍现状#cod#x02014;#cod#x02014;根据国家自然科学基金申请格局的分析[J]. 地球科学进展, 2012, 27(5): 581-588.]
[34] Ma Weifeng,Wang Xiaorui,Gao Shan. Geochemistry science database system for east China based on relational database and WebGIS[J].Earth Science#cod#x02014;Journal of China University of Geosciences, 2008, 33(3): 423-430.
[马维峰, 王晓蕊, 高山. 基于关系数据库和 WebGIS 的中国东部地球化学科学数据库[J]. 地球科学:中国地质大学学报, 2008, 33(3): 423-430.]
[35] Shang Ruxiang, Zeng Guangyu, Li Dexing.Data base management system and application programs for the research of volcanic rocks[J]. Acta Petrologica et Mineralogica,1989,8(4):331-337.
[尚如相, 曾广瑜, 李德兴. 火山岩岩石化学, 地球化学数据库管理系统及应用程序[J]. 岩石矿物学杂志, 1989, 8(4):331-337.]
[36] Shang Ruxiang. Development and present condition of the igneous database[J].Geological Review,1999, 45(7):26-32.
[尚如相.火成岩数据库的发展与现状[J]. 地质论评, 1999,45(7):26-32.]
[37] Shi Changyi. Geochemical database and its application[J]. Geophysical & Geochemical Exploration, 2004, 28(5):382-387.
[史长义.地球化学数据库及其应用概况[J]. 物探与化探, 2004, 28(5):382-387.]
[38] Xu Weichang, Wang Yaonan, Wang Ping, et al. Petrochemistry, mineral chemistry and geochemistry database for magmatic rocks from China[J]. Acta Petrologica sinica, 1991, (2):95.
[徐伟昌, 王耀南, 王平, 等.全国岩浆岩岩石化学、矿物化学及地球化学数据库[J]. 岩石学报, 1991, (2):95.]
[39] Zhang Cong, Yu Bingsong, Mo Shaolong, et al. Design and development of rock sample library based on oracle[J]. Chinese Geological Education, 2012,21(2):56-59.
[张聪, 于炳松, 莫少龙, 等.基于 Oracle 的岩石标本数据库设计与实现[J]. 中国地质教育, 2012, 21(2):56-59.]
[40] Zhao Qiren. We have built the world largest database for geochemical exploration[J]. Chemical Minerals, 2005, 27(2):117.
[赵其仁.我国建成世界最大规模地球化学勘查数据库[J]. 化工矿产地质, 2005, 27(2):117.]
[41] Ma Jianwen, Qin Sixian. Recent advances and development of data assimilation algorithms[J]. Advances in Earth Science, 2012, 27(7): 747-757.
[马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.]
[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 马鹏飞,刘志飞,拓守廷,蒋璟鑫,许艺炜,胡修棉. 国际大洋钻探科学数据的现状、特征及其汇编的科学意义[J]. 地球科学进展, 2021, 36(6): 643-662.
[3] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[4] 高峰,赵雪雁,宋晓谕,王宝,王鹏龙,牛艺博,王伟军,黄春林. 面向 SDGs的美丽中国内涵与评价指标体系[J]. 地球科学进展, 2019, 34(3): 295-305.
[5] 王卷乐,王明明,石蕾,高孟绪,陈明奇,郑晓欢,王超,王玉洁. 科学数据管理态势及其对我国地球科学领域的启示[J]. 地球科学进展, 2019, 34(3): 306-315.
[6] 钟广法. 海底峡谷科学深潜考察研究现状[J]. 地球科学进展, 2019, 34(11): 1111-1119.
[7] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
[8] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
[9] 方家松, 李江燕, 张利. 海底CORK观测30年:发展、应用与展望[J]. 地球科学进展, 2017, 32(12): 1297-1306.
[10] 张春灌, 袁炳强, 张国利. 最新全球重力数据库V23中陆域重力资料质量评估[J]. 地球科学进展, 2017, 32(1): 75-82.
[11] 黄文星, 朱本铎, 刘丽强, 张金鹏. 海底地理实体命名对大陆架划界的影响——以日本为例[J]. 地球科学进展, 2016, 31(8): 811-819.
[12] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[13] 黄文星, 朱本铎, 刘丽强, 张金鹏. 国际海底命名争端案例研究及其启示[J]. 地球科学进展, 2016, 31(1): 78-85.
[14] 谢榕, 刘亚文, 李翔翔. 大数据环境下卫星对地观测数据集成系统的关键技术[J]. 地球科学进展, 2015, 30(9): 855-862.
[15] 杨秋明. 10~30 d延伸期天气预报方法研究进展与展望[J]. 地球科学进展, 2015, 30(9): 970-984.
阅读次数
全文


摘要