地球科学进展 ›› 2010, Vol. 25 ›› Issue (7): 682 -690. doi: 10.11867/j.issn.1001-8166.2010.07.0682

综述与评述 上一篇    下一篇

近海营养盐和微量元素的大气沉降
陈莹,庄国顺,郭志刚   
  1. 复旦大学环境科学与工程系大气化学研究中心,上海 200433
  • 收稿日期:2009-05-05 修回日期:2010-02-24 出版日期:2010-07-10
  • 通讯作者: 陈莹 E-mail:yingchen@fudan.edu.cn
  • 基金资助:

    上海市浦江人才计划“东中国海的大气沉降及其对近海环境和全球变化的可能影响”(编号:09PJ1401200);国家教育部博士点新教师基金项目“大气沉降对富营养化淡水湖中微蘘藻毒素浓度的影响机制”(编号:20090071120007)资助.

Atmospheric Deposition of Nutrients and Trace Elements to the Coastal Oceans: A Review

Chen Ying, Zhuang Guoshun, Guo Zhigang   

  1. Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
  • Received:2009-05-05 Revised:2010-02-24 Online:2010-07-10 Published:2010-07-10
  • Contact: Chen Ying E-mail:yingchen@fudan.edu.cn

受气候变化和人类活动的影响,传输和沉降到全球近海的大气污染物急剧增加。1997年后对近海营养盐和微量元素大气沉降的众多研究表明,通过大气沉降至近海的氮和磷分别为13~73 mmol N /(m2·a)和0.11~1.6 mmol P /(m2·a),微量元素的沉降通量具有显著的时空变化特征,在不同海区最高可相差3个数量级。对于很多近海包括东海(East China Sea)和黄海(Yellow Sea),大气沉降的营养盐和部分微量元素可能超出了其河流输入量。大气沉降除了对近海富营养化有重要贡献之外,其事件性特征可使初级生产力在短期内大幅度增加,从而影响赤潮发生。微量元素沉降还可能抑制某些藻类生长,对初级生产力和生态系统结构产生更为复杂的影响。未来研究重点是准确估算近海各物质的大气沉降通量,了解其对浮游植物生长的影响机制。

Atmospheric transport and deposition of pollutants to the coastal oceans increase dramatically due to the impacts of climate change and human activities. The paper summarizes a number of researches after 1997 on the atmospheric inputs of nutrients and trace elements to the world coastal oceans with emphasis on the eastern China seas. The atmospheric fluxes of nitrogen and phosphorus to the coastal oceans range from 13 to 73 mmol N /(m2·a) and 0.11 to 1.6 mmol P /(m2·a), respectively. North Sea appears to be influenced by relatively higher atmospheric flux of nitrogen (70 mmol N /(m2·a)) compared to the eastern coast of North America (50 mmol N /(m2·a)) and eastern China seas (50 mmol N /(m2·a)). Mediterranean Sea and the Gulf of Aqaba (Red Sea) receive the lowest fluxes of nitrogen as well as phosphorus from the atmosphere. The deposition fluxes of trace elements vary significantly in both time and space with the highest flux approximately 3 orders of magnitude higher than the lowest one. The flux variations of crustaldominated trace elements such as Al and Fe are strongly related to the dust transport and agricultural activities of adjacent land, while atmospheric fluxes of non-crustal trace elements like Cd, Zn and Pb are mainly determined by industrial and mobile emissions. Atmospheric inputs of trace elements can partly dissolve into the seawater with the solubility ranging from a few percent to >50% and that portion may become bioavailable and thereby influence the costal ecosystem. For many coastal oceans including East China Sea and Yellow Sea, atmospheric fluxes of nutrients and certain trace elements may exceed their riverine inputs. Atmospheric deposition contributes significantly to the coastal eutrophication, and its episodic nature can enhance primary productivity within a short period, which may induce a harmful algal bloom (red tide). Trace element deposition may have toxic effects on specific phytoplankton and influence both primary productivity and ecosystem structure of the coastal area. Further studies should be conducted for accurate estimation of atmospheric fluxes of various pollutants to the coastal oceans and for understanding their roles in marine phytoplankton growth. 

中图分类号: 

[1] Brown C, Corcoran E, Herkenrath P, et al. Marine and Coastal Ecosystems and Human Wellbeing: A Synthesis Report Based on the Findings of the Millennium Ecosystem Assessment[M]. UNEP, 2006: 76.
[2] Zhou Mingjiang, Zhu Mingyuan, Zhang Jing. Status of harmful algal blooms and related research activities in China[J].Chinese Bulletin of Life Sciences,2001, 13(2): 54-59.[周名江, 朱明远, 张经. 中国赤潮的发生趋势和研究进展[J]. 生命科学, 2001, 13(2): 54-59.]
[3] Liu Qingchun, Qian Huanshui. International geosphere-biosphere program: Progress and prospect[J].Meteorological Technology and Science,2005, 33(1): 91-95.[刘清春, 千怀遂. 国际地圈—生物圈计划研究进展和展望[J].气象科技, 2005, 33(1): 91-95.]
[4] Duce R A, Liss P S, Merrill J T, et al. The atmospheric input of trace species to the world ocean[J]. Global Biogeochemical Cycles,1991, 5: 193-259.
[5] Paerl H W. Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources[J].Limnology and Oceanography,1997, 42(5): 1 154-1 165.
[6] Gao Y A. Atmospheric nitrogen deposition to Barnegat Bay[J].Atmospheric Environment,2002, 36(38): 5 783-5 794.
[7] Jordan C E, Talbot R W. Direct atmospheric deposition of water-soluble nitrogen to the Gulf of Maine[J].Global Biogeochemical Cycles,2000, 14(4): 1 315-1 329.
[8] Poor N, Pribble R, Greening H. Direct wet and dry deposition of ammonia, nitric acid, ammonium and nitrate to the Tampa Bay Estuary, FL, USA[J].Atmospheric Environment,2001, 35(23): 3 947-3955.
[9] PradoFiedler R, Fuenzalida H A. Wet and dry deposition of nitrogen compounds in the southeast Pacific coast: Montemar, central Chile[J]. Journal of Geophysical Research,1996, 101(D17): 22 845-22 853.
[10] Paerl H W, Dennis R L, Whitall D R. Atmospheric deposition of nitrogen: Implications for nutrient over-enrichment of coastal waters[J]. Estuaries,2002, 25(4B): 677-693.
[11] Caccia V G, Boyer J N. A nutrient loading budget for Biscayne Bay, Florida[J]. Marine Pollution Bulletin,2007, 54(7): 994-1 008.
[12] Spokes L J, Jickells T D. Is the atmosphere really an important source of reactive nitrogen to coastal waters?[J].Continental Shelf Research,2005, 25(16): 2 022-2 035.
[13] Markaki Z, Oikonomou K, Kocak M, et al. Atmospheric deposition of inorganic phosphorus in the Levantine Basin, eastern Mediterranean: Spatial and temporal variability and its role in seawater productivity[J].Limnology and Oceanography,2003, 48(4): 1 557-1 568.
[14] Chen Y, Street J, Golan D, et al. Estimate of atmospheric dry deposition and associated input of nutrients to the Gulf of Aqaba seawater[J].Journal of Geophysical Research,2007, 112, D04309, doi: 10.1029/2006JD007858.
[15] Bartoli G, Migon C, Losno R, et al. Atmospheric input of dissolved inorganic phosphorus and silicon to the coastal northwestern Mediterranean Sea: Fluxes, variability and possible impact on phytoplankton dynamics[J].Deep-Sea Research Part I,2005, 52(11): 2 005-2 016.
[16] Russell K M, Galloway J N, Macko S A, et al. Sources of nitrogen in wet deposition to the Chesapeake Bay region[J]. Atmospheric Environment,1998, 32(14/15): 2 453-2 465.
[17] Shi Jinhui, Gao Huiwang, Zhang Jing. Atmospheric organic nitrogen deposition and significance in marine ecosystem[J].Advances in Earth Science,2006, 21(7): 721-729.[石金辉, 高会旺, 张经. 大气有机氮沉降及其对海洋生态系统的影响[J]. 地球科学进展, 2006, 21(7): 721-729.]
[18] Peierls B, Paerl H W. Bioavailability of atmospheric organic nitrogen deposition to coastal phytoplankton[J].Limnology and Oceanography,1997, 42: 1 819-1 823.
[19] Seitzinger S P, Sanders R W. Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton[J].Limnology and Oceanography,1999, 44: 721-730.
[20] Zhang G, Zhang J, Liu S. Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring sites over Yellow Sea and East China Sea[J].Journal Atmospheric Chemistry,2007, 57: 41-57.
[21] Zhang J. Atmospheric wet deposition of nutrient elements: Correlation with harmful biological blooms in northwest Pacific Coastal Zones[J].Ambio,1994, 23(8): 173-189.
[22] Zhang J, Liu M G. Observations on nutrient elements and sulphate in atmospheric wet deposition over the northwest Pacific coastal oceans-Yellow Sea[J].Marine Chemistry,1994, 47: 173-189.
[23] Chung C S, Hong G H, Lim S H, et al. Shore based observation on wet deposition of inorganic nutrients in the Korean Yellow Sea coast[J].The Yellow Sea,1998, 4: 30-39.
[24] Zhang J, Yu Z G, Raabe T, et al. Dynamics of inorganic nutrient species in the Bohai seawaters[J].Journal of Marine Systems,2004, 44(3/4): 189-212.
[25] Nakamura T, Matsumoto K, Uematsu M. Chemical characteristics of aerosols transported from Asia to the East China Sea: An evaluation of anthropogenic combined nitrogen deposition in autumn[J].Atmospheric Environment,2005, 39(9):1 749-1 758.
[26] Uno I, Uematsu M, Hara Y, et al. Numerical study of the atmospheric input of anthropogenic total nitrate to the marginal seas in the western North Pacific region[J].Geophysical Research Letters,2007, 34, L17817, doi:10.1029/2007GL030338.
[27] Zhang Yan. The Transport of Atmospheric Nitrogen Compounds from the Continent and Their Deposition over the Ocean[D]. Shanghai: Fudan University, 2008.[张艳. 陆源大气含氮物质的传输与海域沉降研究[D]. 上海:复旦大学, 2008.]
[28] de Leeuw G, Spokes L, Jickells T, et al. Atmospheric nitrogen inputs into the North Sea: Effect on productivity[J].Continental Shelf Research,2003, 23(17/19):1 743-1 755.
[29] Carstensen J, Frohn L M, Hasager C B, et al. Summer algal blooms in a coastal ecosystem: The role of atmospheric deposition versus entrainment fluxes[J].Estuarine, Coastal and Shelf Science,2005, 62: 595-608.
[30] Chen H, Hung C, Fang T, et al. Dry deposition and particle-size distribution of phosphorus in the marine atmosphere over the northeastern coast of Taiwan[J].Continental Shelf Research,2008, 28: 756-766.
[31] Liu Sumei, Huang Weiwen, Zhang Jing, et al. Chemical characterization of atmospheric deposition at Qingdao 1. Trace elements[J].Marine Environmental Science,1991, 10(4): 21-28.[刘素美, 黄薇文, 张经,等.青岛地区大气沉降物的化学成分研究1.微量元素[J]. 海洋环境科学, 1991, 10(4): 21-28.]
[32] Pike S M, Moran S B. Trace elements in aerosol and precipitation at New Castle, NH, USA[J].Atmospheric Environment,2001, 35(19): 3 361-3 366.
[33] Kim G, Scudlark J R, Church T M. Atmospheric wet deposition of trace elements to Chesapeake and Delaware Bays[J].Atmospheric Environment,2000, 34(20): 3 437-3 444.
[34] Lu R, Turco R P, Stolzenbach K, et al. Dry deposition of airborne trace metals on the Los Angeles Basin and adjacent coastal waters[J].Journal of Geophysical Research,2003, 108(D2):4 074.
[35] Guieu C, Chester R, Nimmo M, et al. Atmospheric input of dissolved and particulate metals to the northwestern Mediterranean[J].Deep Sea Research II,1997, 44: 655-674.
[36] Chen Y, Paytan A, Chase Z, et al. Sources and fluxes of atmospheric trace elements to the Gulf of Aqaba, Red Sea[J].Journal of Geophysical Research,2008, 113, D05306,doi:10.1029/2007JD009110.[37] Lammel G, Ghim Y S, Broekaert J A C, et al. Heavy metals in air of an eastern China coastal urban area and the Yellow Sea[J].Fresenius Environmental Bulletin,2006, 15(12A): 1 539-1 548.
[38] Sakata M, Tani Y, Takagi T. Wet and dry deposition fluxes of trace elements in Tokyo Bay[J].Atmospheric Environment,2008, 42(23): 5 913-5 922.
[39] Meng W, Qin Y W, Zheng B H, et al. Heavy metal pollution in Tianjin Bohai Bay, China[J].Journal of Environmental Sciences,2008, 20(7): 814-819.
[40] Deboudt K, Flament P, Bertho M L. Cd, Cu, Pb and Zn concentrations in atmospheric wet deposition at a coastal station in Western Europe[J].Water Air and Soil Pollution,2004, 151(1/4): 335-359.
[41] Injuk J, Van Grieken R, De Leeuw G. Deposition of atmospheric trace elements into the North Sea: Coastal, ship, platform measurements and model predictions[J].Atmospheric Environment,1998, 32(17): 3 011-3 025.
[42] Liu Changling, Zhang Jing, Yu Zhigang. Study of the characteristics of the aerosol and atmospheric fluxes of the heavy metals over the Yellow Sea[J].Marine Environmental Science, 1998, 17(4): 1-7.[刘昌岭, 张经, 于志刚. 黄海海域大气气溶胶特征及重金属的大气输入量研究[J]. 海洋环境科学, 1998, 17(4): 1-7.]
[43] Yang Shaojin, Yang Yi′nan, Chen Bingru, et al. Input of atmospheric trace elements to the nearChina ocean[J].Environmental Chemistry,1994, 13(5): 382-387.[杨邵晋, 杨亦男, 陈冰如,等. 近中国海域大气微量元素输入量研究[J]. 环境化学, 1994, 13(5): 382-387.]
[44] Chester R, Nimmo M, Corcoran P A. Rain water aerosol trace metal relationships at Cap Ferrat: A coastal site in the western Mediterranean[J].Marine Chemistry,1997, 58(3/4): 293-312.
[45] Kieber R J, Williams K, Willey J D, et al. Iron speciation in coastal rainwater: Concentration and deposition to seawater[J].Marine Chemistry,2001, 73(2): 83-95.
[46] Zhuang G, Yi Z, Duce R A, et al. Link between iron and sulfur cycles suggested by detection of iron (II)in remote marine aerosols[J].Nature,1992, 355: 537-539.
[47] Zhuang G, Guo J, Yuan H, et al. The compositions, sources and size distribution of the dust storm from China in spring of 2000 and its impact on the global environment[J].Chinese Science Bulletin,2001, 46(3):191-197.
[48] Zhuang Guoshun, Guo Jinghua, Yuan Hui, et al. Coupling between iron and sulfur during atmosphere-ocean material exchange[J].Chinese Science Bulletin,2003, 48(4): 313-319.[庄国顺, 郭敬华, 袁蕙,等.大气海洋物质交换中的铁硫耦合反馈机制[J]. 科学通报, 2003, 48(4): 313-319.]
[49] de Jong J T M, Boye M, Gelado-Caballero M D, et al. Inputs of iron, manganese and aluminium to surface waters of the Northeast Atlantic Ocean and the European continental shelf[J].Marine Chemistry,2007, 107: 120-142.
[50] Williams M R, Millward G E, Nimmo M, et al. Fluxes of Cu, Pb and Mn to the northeastern Irish Sea: The importance of sedimental and atmospheric inputs[J].Marine Pollution Bulletin,1998, 36(5): 366-375.
[51] Duan S W, Liang T, Zhang S, et al. Seasonal changes in nitrogen and phosphorus transport in the lower Changjiang River before the construction of the Three Gorges Dam[J].Estuarine Coastal and Shelf Science,2008, 79(2): 239-250.
[52] Zou L, Chen H T, Zhang J. Experimental examination of the effects of atmospheric wet deposition on primary production in the Yellow Sea[J].Journal of Experimental Marine Biology and Ecology,2000, 249: 111-121.
[53] Zhang X Y, Zhuang G S, Guo J H, et al. Characterization of aerosol over the Northern South China Sea during two cruises in 2003[J].Atmospheric Environment,2007, 41(36): 7 821-7 836.
[54] Kouvarakis G, Mihalopoulos N, Tselepides A, et al. On the importance of atmospheric inputs of inorganic nitrogen species on the productivity of the eastern Mediterranean Sea[J].Global Biogeochemical Cycles,2001, 15(4): 805-817.
[55] Ozsoy T. Atmospheric wet deposition of soluble macro-nutrients in the Cilician Basin, north-eastern Mediterranean sea[J].Journal of Environmental Monitoring,2003, 5(6): 971-976.
[56] Wong G T F, Gong G C, Liu K K, et al. “Excess nitrate” in the East China Sea[J].Estuarine Coastal and Shelf Science,1998, 46(3): 411-418.
[57] Wang B D, Wang X L, Zhan R. Nutrient conditions in the Yellow Sea and the East China Sea[J].Estuarine Coastal and Shelf Science,2003, 58(1): 127-136.
[58] Zhang J, Zhang G S, Liu S M. Dissolved silicate in coastal marine rainwaters: Comparison between the Yellow Sea and the East China Sea on the impact and potential link with primary production[J].Journal of Geophysical Research,2005, 110, D16304, doi:10.1029/2004JD005411.
[59] Raven J A, Evans M C W, Korb R E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms[J].Photosynthetic Research,1999, 60: 111-149.
[60] Boyd P W, Wong C S, Merrill J, et al. Atmospheric iron supply and enhanced vertical carbon flux in the NE subarctic Pacific:Is there a connection?[J].Global Biogeochemical Cycles,1998,12(3): 429-441.[61] Paerl H W, Prufertbebout L E, Guo C Z. Iron-stimulated N-2 fixation and growth in natural and cultured populations of the planktonic marine cyanobacteria Trichodesmium spp[J].Applied and Environmental Microbiology,1994, 60(3): 1 044-1 047.
[62] Falkowski P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean[J].Nature,1997, 387(6 630): 272-275.
[63] Bishop J K B, Davis R E, Sherman J T. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific[J].Science,2002, 298(5 594): 817-821.
[64] Wundram M, Selmar D, Bahadir M. The Chlamydomonas test: A new phytotoxicity test based on the inhibition of algal photosynthesis enables the assessment of hazardous leachates from waste disposals in salt mines[J].Chemosphere,1996, 32:1 623-1 631.
[65] Bertrand M, Schoefs B, Siffel P, et al. Cadmium inhibits eposidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum[J].FEBS Letters,2001, 508: 153-156.
[66] Paytan A, Mackey K R M, Chen Y, et al. Toxicity of atmospheric aerosols on marine phytoplankton[J]. Proceedings of the National Academy Sciences of the United States of America,2009, 106: 4 601-4 605.

[1] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[2] 黄小平,江志坚. 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019, 34(5): 480-487.
[3] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[4] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[5] 邹银洪, 张润宇, 陈敬安, 王立英, 陆顶盘. 黏土矿物在富营养化水体和底泥磷污染控制中的应用研究进展[J]. 地球科学进展, 2018, 33(6): 578-589.
[6] 林晓娟, 高姗, 仉天宇, 刘桂梅. 海水富营养化评价方法的研究进展与应用现状[J]. 地球科学进展, 2018, 33(4): 373-384.
[7] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[8] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[9] 黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义[J]. 地球科学进展, 2015, 30(9): 1063-1073.
[10] 任诗鹤, 王辉, 刘娜. 中国近海海洋锋和锋面预报研究进展[J]. 地球科学进展, 2015, 30(5): 552-563.
[11] 杨永琼,陈敬安,王敬富,曾艳. 沉积物磷原位钝化技术研究进展[J]. 地球科学进展, 2013, 28(6): 674-684.
[12] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[13] 郑勇玲,吴承强,蔡 锋,鲍晶晶,许 艳. 我国海底地貌研究进展及其在东海近海的新发现、新认识[J]. 地球科学进展, 2012, 27(9): 1026-1034.
[14] 黄建国,李虎杰,李文杰,董 磊. 贵州戈塘金矿萤石微量元素特征及钐—钕测年[J]. 地球科学进展, 2012, 27(10): 1087-1093.
[15] 赵中阔,廖菲,刘春霞,毕雪岩,王介民,万齐林,黄建. 近岸海洋气象平台涡动相关数据处理与质量控制[J]. 地球科学进展, 2011, 26(9): 954-964.
阅读次数
全文


摘要