地球科学进展 ›› 2009, Vol. 24 ›› Issue (2): 211 -218. doi: 10.11867/j.issn.1001-8166.2009.02.0211

生态学研究 上一篇    

黄土高原沟壑区通量数据空间代表性研究
楚良海 1,刘文兆 1,2*,朱元骏 2,李双江 3   
  1. 1. 西北农林科技大学资源环境学院,陕西 杨凌 712100;2. 中国科学院、水 利 部 水土保持研究所,陕西 杨凌 712100;3. 河北科技大学环境科学与工程学院,河北 石家庄 050018
  • 收稿日期:2008-09-16 修回日期:2008-11-19 出版日期:2009-02-10
  • 通讯作者: 刘文兆(1960-),男,陕西乾县人,研究员,主要从事水文生态与流域管理研究. E-mail:wzliu@ms.iswc.ac.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“黄土高原旱作农田生产力及水分生态过程调控”(编号:KZCX2-YW-424);教育部长江学者和创新团队发展计划项目“黄土高原流域生态系统中水土迁移机制及其调控原理”(编号:IRT0749)资助.

Spatial Representation of Flux Data in Gully Region on the Loess Plateau

Chu Lianghai 1,Liu Wenzhao 1,2,Zhu Yuanjun 2,Li Shuangjiang 3   

  1. 1. College of Resources and Environment, Northwest Agricultural & Forest University, Yangling 712100, China;
    2. Institute of Soil and water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China;
    3. College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
  • Received:2008-09-16 Revised:2008-11-19 Online:2009-02-10 Published:2009-02-10

利用FSAM(Flux Source Area Model)模型,对中国科学院长武黄土高原农业生态试验站2004—2005年冬小麦生育期内的通量数据空间代表性进行了研究。结果发现,在90%贡献率水平下,整个冬小麦各生育期内通量源区范围动态变化明显,通量贡献最大点在距离观测点7.7~36.2 m范围内变化。在盛行风向上,通量源区离观测点最近点为3.3 m,最远点可达172.8 m;在侧风向上,通量源区在38.1~128.4 m范围内变化。不同观测高度的对比研究表明,观测高度从1.86 m增加到12.17 m,盛行风向上源区距观测点最远距离从172.8 m增加到1 555.2 m;在侧风向上则从123.2 m增加到665.8 m,通量源区范围随高度的增加而增大。大气稳定度对通量贡献源区影响很大,在大气稳定状态下,通量源区面积最大,距观测点最远距离达到135.3 m;中性条件下次之,为101.7 m;在不稳定条件下面积最小,为36.3 m。同一日内,夜晚源区面积较白天大。在日和季尺度上,大气稳定度是影响通量源区范围的一个重要因素。

Spatial representation of flux data during winter wheat growing period from 2004 to 2005 was analyzed in Changwu Station, the Chinese Academy of Sciences by FSAM (Flux Source Area Model). The results indicated that flux source area (FSA, footprint) was dramatically changed during each growing stage of winter wheat under the effect level of 90% confidence. The source area of the maximum footprint was located between 7.7 m and 36.2 m from the observation point. In the prevailing wind direction, the upwind range of source area was 3.3~172.8 m, and vertical upwind range was 38.1~128.4 m.The comparison of footprint among different measurement heights showed that: with the measurement height increased up from 1.86 to 12.17 m, the length of footprint expanded from 172.8 m to 1555.2 m in the prevailing wind direction and from 123.2 m to 665.8 m in the vertical direction. The footprint fluctuated with atmospheric stability. The length of the source area is the largest under the stable atmospheric stratification with the distance of 135.3 m from the observation point, reaching 101.7 m under the condition of moderate atmospheric stratification, and the smallest is under unstable stratification with the distance of 36.3 m. Meanwhile, the source area in night is larger than that in daytime. In daily and seasonal scales, atmospheric stability has an important effect on flux source area.

中图分类号: 

[1] Yu Guirui, Sun Xiaomin, Wen Xuefa, et al. Principles of Flux Measurement in Terrestrial Ecosystems[M].Beijing: Higher Education Press,2006.[于贵瑞,孙晓敏,温学发,等.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006.]
[2] Wang Jiemin, Wang Weizhen, Ao Yinhuan, et al. Turbulence flux measurements under complicated conditions[J].Advances in Earth Science,2007, 22(8):791-797.[王介民,王维真, 奥银焕,等.复杂条件下湍流通量的观测与分析[J].地球科学进展,2007,22(8):791-797.]
[3] Huang Yao. The Carbon and Nitrogen Exchange in Soil-atmosphere system from Experiments to Models[M].Beijing:China Meteorological Press,2003.[黄耀.地气系统碳氮交换——从实验到模型[M]. 北京:气象出版社,2003.]
[4] Yu Guirui, Zhang Leiming, Sun Xiaomin, et al. Advances in carbon flux observation and research in Asia[J].Science in China (Series D),2004, 34(suppl:II): 15-29.[于贵瑞, 张雷明,孙晓敏,等.亚洲区域陆地生态系统碳通量观测研究进展[J]. 中国科学:D辑,2004, 34 (增刊Ⅱ): 15-29.]
[5] Yu Guirui. Global Change, Carbon Cycle and Accumulation in Terrestrial Ecosystems[M]. Beijing: China Meteorological Press,2003.[于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积[M].北京:气象出版社,2003.]
[6] Schmid H P.Source areas for scalars and scalar fluxes[J].Boundary-Layer Meteorology,1994,67:293-318.
[7] Schmid H P. Footprint modeling for vegetation and atmosphere exchange studies:A review and perspective[J].Agricultural and Forest Meteorology,2002,113 :159-183.
[8] Schmid H P, Lloyd C R. Spatial representativeness and the location bias of flux footprints over inhomogeneous areas[J]. Agricultural and Forest Meteorology,1999, 93 :195-209.
[9] Göckede M, Rebmann C, Foken T. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites[J].Agricultural and Forest Meteorology,2004, 127 :175-188.
[10] Kim J, Guo Q, Baldocchi  D D, et al. Upscaling fluxes from tower to landscape: Overlaying flux footprints on high-resolution (IKONOS) images of vegetation cover[J].Agricultural and Forest Meteorology,2006, 136 :132-146.
[11] Sogachev A, Lloyd J. Using a one-and-a-half order closure model of the atmospheric boundary layer for surface flux footprint estimation[J].Boundary-Layer Meteorology,2004,112:467-502.
[12] Kormann R, Meixner F X. An analytical footprint model for non-neutral stratification[J].Boundary-Layer Meteorology,2001, 99:207-224.
[13] Kljun N, Kormann R,Rotach M W, et al. Comparison of the langrangian footprint model LPDM-B with an analytical footprint model[J].Boundary-Layer Meteorology,2003,106:349-355.
[14] Kljun N, Rotach M W, Schmid H P. A Three-Dimensional backward Lagrangian footprint model for a wide range of boundary layer stratifications[J].Boundary-Layer Meteorology, 2002, 103: 205-226.
[15] Liu Shuhua, Ma Yimin. The characteristics of CO2 concentration and flux turbulence fluxes in the near surface layer over the wheat field[J].Acta Meteorology Sinica,1997,4:181-199. 
[16] Mi Na, Yu Guirui, Wen Xuefa, et al. A preliminary study for spatial representiveness of flux observation at ChinaFLUX sites[J]. Science in China (Series D),2006, 36(suppl.Ⅰ): 22-33.[米娜,于贵瑞, 温学发,等.中国通量观测网络(ChinaFLUX)通量观测空间代表性初步研究[J]. 中国科学:D辑,2006,36(增刊Ⅰ):22-33.]
[17] Shen Yan, Liu Yunfen. Examination of source area in-flux measurements at the Mid-Subtropical forest region[J].Acta Phytoecologica Sinica,2005, 29(2):202-207.[沈艳,刘允芬.中亚热带森林区通量观测的源面积探讨[J].植物生态学报,2005,29(2):202-207.]
[18] Zhao Xiaosong, Guan Dexin, Wu Jiabing, et al.Distribution of footprint and flux source area of the mixed forest of broad-leaved and Korean pine in Changbai Mountain[J].Journal of Beijing Forestry University,2005,27(3):17-23.[赵晓松,关德新,吴家兵,等.长白山阔叶红松林通量观测的footprint及源区分布[J]. 北京林业大学学报,2005,27(3):17-23.]
[19] Shen Yan, Liu Yunfen, Wang Yan. Advances in applying the eddy-covariance technique to calculate heat, moisture and CO2 flux[J].Journal of Nanjing Institute of Meteorology, 2005,4:559-566.[沈艳,刘允芬, 王堰.应用涡动相关法计算水热、CO2通量的国内外进展概况[J].南京气象学院学报,2005,4:559-566.]

[1] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[2] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[3] 朱明佳, 赵谦益, 刘绍民, 徐同仁. 农田下垫面观测通量的变化特征及其气候学足迹分析[J]. 地球科学进展, 2013, 28(12): 1313-1325.
[4] 李朝柱,张晓,许元斌,饶志国. 黄土高原地区晚中新世以来陆地植被C 3/C 4植物相对丰度演化研究进展[J]. 地球科学进展, 2012, 27(3): 284-291.
[5] 赵中阔,廖菲,刘春霞,毕雪岩,王介民,万齐林,黄建. 近岸海洋气象平台涡动相关数据处理与质量控制[J]. 地球科学进展, 2011, 26(9): 954-964.
[6] 王维真,徐自为,李新,王介民,张智慧. 大孔径闪烁仪在黑河流域的应用分析研究[J]. 地球科学进展, 2010, 25(11): 1208-1216.
[7] 王建林,温学发 ,孙晓敏,王秋凤,王辉民,刘允芬. 涡动相关系统和小孔径闪烁仪观测的森林显热通量的异同研究[J]. 地球科学进展, 2010, 25(11): 1217-1227.
[8] 艾力·买买提明,何清,霍文,刘新春. 塔克拉玛干沙漠腹地LAS和EC观测感热通量对比分析[J]. 地球科学进展, 2010, 25(11): 1228-1236.
[9] 李远, 孙睿, 刘绍民, 徐自为, 白洁. 大孔径闪烁仪观测数据在陆面模式验证中的应用初探[J]. 地球科学进展, 2010, 25(11): 1237-1247.
[10] 卢俐,刘绍民,徐自为,白洁,王介民. 大孔径闪烁仪和涡动相关仪观测显热通量之间的尺度关系[J]. 地球科学进展, 2010, 25(11): 1273-1282.
[11] 李宏宇,张强,王胜. 陇中黄土高原夏季陆面辐射和热量特征研究[J]. 地球科学进展, 2010, 25(10): 1070-1081.
[12] 双喜,刘绍民,徐自为,王维真. 黑河流域观测通量的空间代表性研究[J]. 地球科学进展, 2009, 24(7): 724-733.
[13] 王介民, 王维真, 刘绍民, 马明国, 李新. 近地层能量平衡闭合问题—综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-714.
[14] 王维真,徐自为,刘绍民,李新,马明国,王介民. 黑河流域不同下垫面水热通量特征分析[J]. 地球科学进展, 2009, 24(7): 714-723.
[15] 张强,胡向军,王胜,刘宏谊,张杰,王润元. 黄土高原陆面过程试验研究(LOPEX)有关科学问题[J]. 地球科学进展, 2009, 24(4): 363-372.
阅读次数
全文


摘要