地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.056

   

海相沉积磷灰石相关稀土的资源潜力和成矿机理
袁雨凡1,苟文贤2*,刘一涵3,黄艺3,任超4,李伟5   
  1. (1. 成都理工大学 地球与行星科学学院,四川 成都 610059;2. 地质灾害防治与地质环境保护全国重点实验室,成都理工大学,四川 成都 610059;3. 成都理工大学 生态环境学院,四川 成都 610059;4. 南京理工大学 环境与生物工程学院,江苏 南京 210023;5. 表生地球化学教育部重点实验室,关键地球物质循环与成矿全国重点实验室,南京大学 地球科学与工程学院,江苏 南京 210023)
  • 基金资助:
    关键地球物质循环与成矿全国重点实验室开放研究基金项目(编号:2024-LAMD-K02)资助.

Advances in Resource Potential and Mineralization Mechanism of REY in Marine Apatite-rich Sediment

YUAN Yufan1, GOU Wenxian2*, LIU Yihan3, HUANG Yi3, REN Chao4, LI Wei5   

  1. (1. College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, China; 2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; 3. College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; 4. School of Environmental & Biological Engineering, Nanjing University of Science and Technology, Nanjing 210023, China; 5. Key Laboratory of Surficial Geochemistry, Ministry of Education, State Key Laboratory of Critical Earth Material Cycling and Mineral Deposits, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China)
  • About author:YUAN Yufan, research areas include environmental geochemistry. E-mail: 306664431@qq.com
  • Supported by:
    Project supported by the Open Research Fund of the State Key Laboratory of Critical Earth Material Cycling and Mineral Deposits, Nanjing University (Grant No.2024-LAMD-K02).
海相沉积型磷块岩及富稀土深海沉积物(统称海相沉积磷灰石相关稀土资源)因分布广、储量大和重稀土富集,被认为是继碱性岩型与离子吸附型稀土之后的重要接替性资源。该类矿床产业化开发需以深入认知其资源禀赋及成矿机制为前提,基于此,梳理了近15 年研究进展,聚焦该类矿床的全球分布、开采技术、稀土赋存及富集机制。研究表明,全球已发现多处具经济价值的矿化区,资源潜力巨大,但受制于开采技术,商业化开采尚难实现。在成矿机理上,该类资源整体受控于“磷—稀土”耦合机制,矿物—溶液界面反应与早期成岩作用是稀土富集的关键,其中磷块岩型主要依赖胶磷矿吸收与黏土矿物吸附固定来自陆源、海水或热液的稀土,而深海沉积型则通过生物磷灰石骨架类质同像置换直接捕获海水中的稀土。这些认识为稀土成矿理论完善和未来开发奠定了基础,但研究仍处早期阶段,系统性和深度不足,未来亟须多学科多技术协同攻关,重点突破储量精确评估、开采技术研发及成矿理论完善。
Abstract: Rare earth elements and yttrium (REY) are one of the most critical strategic resources in the world today. However, the intensive exploitation and supply of conventional rare metal deposits—primarily those associated with alkaline igneous rocks and ion-adsorption clays, have led to mounting challenges for the rare earth industry, including declining resource security and increasing environmental pressure. This situation underscores the urgent need to seek alternative rare earth resources. Sedimentary phosphate rocks and deep sea REY-rich sediments have emerged as promising alternatives. They are widely distributed, possess large reserves, and are enriched in heavy rare earth elements. In recent years, considerable research have focused on the REY resource potential and mineralization mechanism of these two deposits. They found that there are several economically valuable the mineral concentrated area, distributing globally. Several studies have established mining and utilization models and developed REY extraction strategies. In terms of the ore formation mechanism, current knowledge suggests that the enrichment of REY in deep-sea sediments and phosphorus deposits is closely tied to phosphorus-enrichment, although these deposits have certain differences in terms of occurrence form, mineralization environment, and rare earth source, etc. Sorption at mineral-solution interface along with early diagenesis, are considered as the key processes to REY enrichment. However, Most of these studies were published in the past 15 years, and their systematicness and depth still fall short. For example, despite their potential, commercial development remains constrained by technical, environmental, and economic challenges— including mining equipment limitations, ecological risks, and uncertain market revenues. As a result, large-scale industrial extraction from deep-sea sediments has yet to be realized. Additionally, REY enrichment mechanisms is poorly understood. In the future, multidisciplinary collaboration will be essential. Collaborative research involving multiple disciplines and multiple technical methods will enable more precise estimation of resource reserves and contribute to the metallogenic enrichment theories. This paper provides a comprehensive overview of recent advances in the understanding of the rare earth resource replacement potential and offers perspectives for future research directions in this field.

中图分类号: 

[1] 刘焱, 周跃飞, 杜蒙蒙, 徐子涛, 谢巧勤, 李全忠, 陈天虎. 蓝藻对纳米矿物中稀土元素的分馏作用[J]. 地球科学进展, 2025, 40(6): 647-660.
[2] 雒恺, 马金龙. 花岗岩风化过程中稀土元素迁移富集机制研究进展[J]. 地球科学进展, 2022, 37(7): 692-708.
[3] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[4] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示*[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[5] 李向东, 阙易, 郇雅棋. 桌子山中奥陶统克里摩里组下段薄层状石灰岩垂向序列分析[J]. 地球科学进展, 2017, 32(3): 276-291.
[6] 陈林, 唐红, 李雄耀, 欧阳自远, 王世杰. 基于1.4 μm红外光谱测量磷灰石结构水的定量方法探讨[J]. 地球科学进展, 2016, 31(4): 403-408.
[7] 陈友良,魏 佳,叶永钦,宋 昊, 孙泽轩. 若尔盖铀矿田方解石稀土元素与碳氧同位素地球化学特征及其意义[J]. 地球科学进展, 2012, 27(10): 1061-1067.
[8] 王剑飞,萨仁高娃,李铁刚,申之义,于心科. 苏禄海深海沉积物古菌群落结构多样性研究[J]. 地球科学进展, 2010, 25(7): 766-774.
[9] 熊国庆,江新胜,蔡习尧,伍皓. 藏南白垩系泥、页岩微量、稀土元素特征及氧化—还原环境分析[J]. 地球科学进展, 2010, 25(7): 730-745.
[10] 李俊;弓振斌;李云春;温裕云;杨逸萍. 近岸和河口地区稀土元素地球化学研究进展[J]. 地球科学进展, 2005, 20(1): 64-073.
[11] 马英军;霍润科;徐志方;张辉;刘丛强. 化学风化作用中的稀土元素行为及其影响因素[J]. 地球科学进展, 2004, 19(1): 87-094.
[12] 王中良,刘丛强,徐志方,韩贵琳,朱建明,张 劲. 河流稀土元素地球化学研究进展[J]. 地球科学进展, 2000, 15(5): 553-540.
[13] 丁振举,刘丛强,姚书振,周宗桂. 海底热液系统高温流体的稀土元素组成及其控制因素[J]. 地球科学进展, 2000, 15(3): 307-312.
[14] 王毅民,王晓红,宋浩威,高玉淑. 中国的大洋多金属结核及沉积物标准物质系列[J]. 地球科学进展, 1998, 13(6): 533-541.
[15] 王仲武,裘愉卓. 表生过程中水的稀土元素行为及其再分配[J]. 地球科学进展, 1996, 11(4): 378-382.
阅读次数
全文


摘要