地球科学进展 ›› 2025, Vol. 40 ›› Issue (7): 753 -765. doi: 10.11867/j.issn.1001-8166.2025.052

研究论文 上一篇    

藏东南地区米堆冰川表碛与退缩区重金属分布特征与风险
雷蒙蒙1,2(), 郑倩倩3, 胡义1, 毛雯靖1,2, 殷永胜1,2, 刘巧1, 关卓1, 鲁旭阳1, 刘琛1()   
  1. 1.中国科学院、水利部成都山地灾害与环境研究所,四川 成都 610041
    2.中国科学院大学,北京 100049
    3.西藏自治区生态环境科学研究院,西藏 拉萨 850000
  • 收稿日期:2025-05-08 修回日期:2025-06-12 出版日期:2025-07-10
  • 通讯作者: 刘琛 E-mail:leimengmeng@imde.ac.cn;chen1017@imde.ac.cn
  • 基金资助:
    四川省科技计划项目(2024NSFSC0839);西藏自治区财政项目(54000024T000001419692)

Distribution Characteristics and Risk of Heavy Metals in Debris and Retreat Area of Midui Glacier in Southeastern Xizang

Mengmeng LEI1,2(), Qianqian ZHENG3, Yi HU1, Wenjing MAO1,2, Yongsheng YIN1,2, Qiao LIU1, Zhuo GUAN1, Xuyang LU1, Chen LIU1()   

  1. 1.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.Xizang Autonomous Region Academy of Ecological and Environmental Sciences, Lhasa 850000, China
  • Received:2025-05-08 Revised:2025-06-12 Online:2025-07-10 Published:2025-09-15
  • Contact: Chen LIU E-mail:leimengmeng@imde.ac.cn;chen1017@imde.ac.cn
  • About author:LEI Mengmeng, research areas include environmental behavior of emerging contaminants. E-mail: leimengmeng@imde.ac.cn
  • Supported by:
    the Sichuan Science and Technology Program(2024NSFSC0839);The Xizang Autonomous Region Finance Project(54000024T000001419692)

青藏高原冰川加速退缩导致冰川累积的重金属释放并发生迁移,对冰川下游生态系统与人类健康产生潜在风险,但目前针对冰川退缩区环境介质中重金属的赋存特征和生态风险的研究较为缺乏。选取藏东南海洋型冰川米堆冰川为对象,研究冰川表碛与退缩区土壤及冰川融水环境中典型重金属的分布特征与风险。结果表明,冰川表碛与退缩区土壤中重金属总含量为144.8~520.2 mg/kg,以Zn、As和Cr为主且空间变化较大,Cd和Hg含量较低。冰川从末端表碛覆盖的裸地开始,形成以沙棘和杨树为先锋树种,最终向林芝云杉和大果圆柏顶级树种过渡的演替序列。重金属含量随土壤发育、植被演替及退缩区内人类活动增加呈逐渐增加趋势,且在退缩区第三阶段重金属含量最高,多数重金属含量在不同阶段存在显著差异,与土壤pH值和碳氮磷等环境因子显著相关。冰湖至下游河流中的重金属总浓度范围为3.76~33.70 μg/L,以Zn和As为主,均远低于我国I类水限值,其中冰川观景台附近的冰前湖(光谢错)末端出口处及冰湖下游流经村庄段的重金属浓度相对较高,这与冰川区内人类活动密切相关。冰川表碛与退缩区土壤的重金属整体处于中等潜在生态风险水平,Cd和As为构成风险的主要重金属,冰湖及其下游水环境则无风险。研究结果可为进一步探究青藏高原冰川生态系统变化下重金属生物地球化学及其生态影响提供经典案例和基础数据。

The accelerated retreat of glaciers on the Tibetan Plateau has led to the mobilization and downstream transport of accumulated heavy metals, posing a potential risk to downstream ecosystems and human health. However, current research on the distribution and ecological risk of heavy metals in glacier retreat areas remains limited. This study targeted the monsoon temperate Midui Glacier in southeastern Xizang China and investigated the distribution and ecological risk of typical heavy metals in its debris and soils in the retreat and water environments. The results showed that soil heavy metal content range from 144.8 to 520.0 mg/kg, which was dominated by Zn, As, and Cr, with relatively large spatial variation. The Cd and Hg concentrations were low. Soil heavy metal levels progressively increased from the debris to different stages of the retreat area, driven by soil development, vegetation succession, and intensified human activities, with the highest content observed in the third retreat stage. Most heavy metals (except Cu, Pb, and Hg) exhibited significant differences among the retreat stages but were significantly correlated with soil pH and nutrients. In glacial meltwater, the concentrations of heavy metals from proglacial lakes to downstream rivers vary between 3.76 and 33.37 μg/L, and remain well below Class I water quality standards. Notably, elevated levels were detected near the outlet of the proglacial lake (Guangxie Cuo) from the Midui Glacier viewpoint, and downstream, passing through the village, reflecting the strong influence of anthropogenic activities. The ecological risk assessment revealed that heavy metals pose a moderate potential ecological risk in soils, which are dominated by Cd and As, whereas there is no risk in the water environment. These findings offer critical baseline data and a valuable case study for understanding heavy metal biogeochemistry under glacier ecosystem changes on the Tibetan Plateau.

中图分类号: 

图1 米堆冰川表碛与退缩区土壤及冰川融水样点分布
图中白色和黑色数字分别为水体和土壤样点编号;水样点1~7分别为:冰湖1、冰湖2、冰湖3、冰湖4、冰湖下游、下游支流和村庄下游;退缩区3个演替阶段的植被依次为:先锋植物、落叶阔叶和针阔混交。
Fig. 1 Distribution of sampling points for soil and water collection in the glacier debris and retreat area of Midui Glacier
The white and black numbers in the figure represent the water and soil sampling site numbers, respectively; Water sampling sites 1~7 correspond to: glacial lake 1, glacial lake 2, glacial lake 3, glacial lake 4, downstream of glacial lakes, tributary stream and downstream of village section; The three stages of vegetation succession of the retreat area are: pioneer species, deciduous broadleaf forest, and mixed coniferous-broadleaf forest.
表1 土壤重金属污染风险等级标准
Table 1 Grading standards for soil heavy metal contamination assessment methods
图2 冰川表碛与退缩区不同阶段土壤的基本化学性质
Fig. 2 Soil chemical properties at different stages in the glacier debris and retreat area
图3 冰湖及下游河流冰川融水的基本化学性质
Fig. 3 Chemical properties of the glacial lake and its downstream river water
图4 冰川表碛与退缩区水土环境中重金属含量范围
Fig. 4 Heavy metal concentration ranges in water and soil environment of the glacier debris and retreat areas
图5 冰川表碛与退缩区不同阶段土壤及冰川融水中重金属分布特征
Fig. 5 Distribution of heavy metals in soil and water environment of the glacier debris and different stages of retreat area
表2 本研究与文献中青藏高原冰川环境中重金属最高含量/浓度值
Table 2 Maximum concentration values of heavy metals in this study and other reported glacier environment
环境介质冰川名称CrNiCuZnAsCdPbHg

土壤/

(mg/kg)

海螺沟冰川173.001433.601423.801494.00140.431426.3014
玉珠峰冰川57.801425.7014109.0014175.00141.131418.0014
七一冰川74.601435.601444.101469.80140.291424.2014
卡若拉冰川119.901673.1716255.00161.791691.9516
南部某冰川97.601433.401429.301482.40140.171453.3014
西部某冰川141.001460.501491.801489.60140.511439.9014
本文128.0095.0070.00150.00130.000.5764.000.13

水体/

(μg/L)

老虎沟冰川17.40173.49112.31112.86170.75290.06111.4317
海螺沟冰川5.67141.57141.50148.7952.29140.02140.055
七一冰川4.10292.60141.41148.79290.51140.01140.1314
玉珠峰冰川11.20291.78294.06294.442912.50140.04290.3729
绒布冰川1.92143.34141.77140.57140.03140.0214
庙尔沟冰川28.00294.71291.64290.16293.16290.02290.0129
冷龙岭冰川22.0053.2951.03516.4051.9150.0450.275
达古冰川4.1051.88141.00145.7150.96140.07140.125
玉龙雪山冰川28.0054.7151.6452.7059.1850.0250.375
唐古拉冰川0.36111.08111.2511145.00110.05110.2211
科其喀尔冰川1.08140.82141.07140.95140.03140.0314
白水1号冰川5.67141.57141.50140.96140.07140.0614
本文0.751.461.8911.4016.803.56
图6 米堆冰川水土环境中重金属与环境因子相关性分析
Fig. 6 Correlation analysis of heavy metal content and chemical properties in the glacial water and soil environment of Midui Glacier
图7 米堆冰川重金属污染风险评估
Fig. 7 Risk assessment of heavy metal pollution in the Midui Glacier
表3 米堆冰川水土环境质量与风险评价分级标准
Table 3 Comprehensive evaluation of water-soil environmental quality and risk in the Midui Glacier zone
[42] XU Z, MI W B, MI N, et al. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities[J]. Environmental Science and Pollution Research International202027(31): 38 835-38 848.
[43] HAN Lin, XU Xibo. Quantitative evaluation of human health risk of heavy metals in soils based on positive matrix factorization model and geo-statistics[J]. Environmental Science202041(11): 5 114-5 124.
韩琳, 徐夕博. 基于PMF模型及地统计的土壤重金属健康风险定量评价[J]. 环境科学202041(11): 5 114-5 124.
[44] DU Jia, WANG Yonghong, HUANG Qinghui, et al. Temporal and spatial characteristics of heavy metals in suspended particulate matter in Pearl River Estuary and its influencing factors[J]. Environmental Science201940(2): 625-632.
杜佳, 王永红, 黄清辉, 等. 珠江河口悬浮物中重金属时空变化特征及其影响因素[J]. 环境科学201940(2): 625-632.
[45] YANG Wenqiang, ZENG Xiwen, Zhan LÜ, et al. Distribution, accumulation and sources of chromium in Hailuogou glacier retreated area[J]. China Environmental Science202242(11): 5 229-5 238.
杨闻强, 曾熙雯, 吕展, 等. 海螺沟冰川退缩区中铬的分布、累积与来源[J]. 中国环境科学202242(11): 5 229-5 238.
[46] SHU Siqi, LUO Huan, SHI Xiaojun, et al. Functional mechanisms and application prospects of acid-tolerant bacteria in ameliorating acidic soils[J]. Microbiology China202552(6): 2 424-2 440.
舒思祺, 罗欢, 石孝均, 等. 耐酸细菌在酸性土壤改良中的功能机制与应用前景[J]. 微生物学通报202552(6): 2 424-2 440.
[47] YAO Shun, FENG Guorui, ZHAO Dekang, et al. Research progress of clay minerals in the field of mine water treatment[J/OL]. Materials Reports20241-20 (2024-12-06)[2025-04-12]. .
姚顺, 冯国瑞, 赵德康, 等. 黏土矿物在煤矿矿井水治理领域的研究进展[J/OL]. 材料导报20241-20 (2024-12-06)[2025-04-12]. .
[48] YU Dafu. Background values of 9 elements in the soils of Gongga Shan mountain area[J]. Acta Ecologica Sinica19844(3): 201-206.
余大富. 贡嘎山土壤中一些元素的背景值[J]. 生态学报19844(3): 201-206.
[49] HAN Shengmei, LIU Yulong, Weige NAN, et al. Study on the distribution characteristics and ecological risk of potential toxic elements on the roadside of gemang highway in Qinghai-Tibet Plateau[J/OL]. Earth and Environment20251-12 (2025-04-11)[2025-04-12]. .
韩胜眉, 刘玉龙, 南维鸽, 等. 潜在有毒元素在青藏高原格茫公路路侧的分布特征及生态风险研究[J/OL]. 地球与环境20251-12 (2025-04-11)[2025-04-12]. .
[50] FAN Zhiying, LI Jiangrong, GAO Tan, et al. Spatial distribution characteristics and pollution assessment of heavy metals in forest soils of the Sygera Mountain[J]. Journal of Northwest A & F University(Natural Science Edition)202048(8): 93-100.
樊志颖, 李江荣, 高郯, 等. 色季拉山森林土壤重金属空间分布特征及污染评价[J]. 西北农林科技大学学报(自然科学版)202048(8): 93-100.
[1] ZHANG Y L, KANG S C, LUO X, et al. Microplastics and nanoplastics pose risks on the Tibetan Plateau environment[J]. Science Bulletin202469(5): 589-592.
[2] YU M W, GUO Y G, ZHANG J, et al. Spaciotemporal distribution characteristics of glacial lakes and the factors influencing the Southeast Tibetan Plateau from 1993 to 2023[J]. Scientific Reports202515(1): 1966. DOI:10.1038/s41598-025-86546-2 .
[3] LIU X L, DONG Z W, WEI T, et al. Composition, distribution, and risk assessment of heavy metals in large-scale river water on the Tibetan Plateau[J]. Journal of Hazardous Materials2024, 476. DOI:10.1016/j.jhazmat.2024.135094 .
[4] ZABORSKA A, STRZELEWICZ A, RUDNICKA P, et al. Processes driving heavy metal distribution in the seawater of an Arctic fjord (Hornsund, southern Spitsbergen)[J]. Marine Pollution Bulletin2020, 161. DOI:10.1016/j.marpolbul.2020.111719 .
[5] JIAO X Y, DONG Z W, KANG S C, et al. New insights into heavy metal elements deposition in the snowpacks of mountain glaciers in the eastern Tibetan Plateau[J]. Ecotoxicology and Environmental Safety2021, 207. DOI:10.1016/j.ecoenv.2020.111228 .
[6] SUN R Y, SUN G Y, KWON S Y, et al. Mercury biogeochemistry over the Tibetan Plateau: an overview[J]. Critical Reviews in Environmental Science and Technology202151(6): 577-602.
[7] WU R, DONG Z W, WEI T, et al. Comparison on distribution and sources of typical major and toxic trace elements in various glacial watersheds of the northeast Tibetan Plateau[J]. Ecotoxicology and Environmental Safety2023, 263. DOI:10.1016/j.ecoenv.2023.115271 .
[8] LIU Yajun, ZHANG Yulan, KANG Shichang, et al. Characteristics of heavy metal elements deposited on glaciers in the southeastern Tibetan Plateau[J]. Journal of Glaciology and Geocryology201739(6): 1 200-1 211.
刘亚军, 张玉兰, 康世昌, 等. 青藏高原东南部冰川雪冰重金属元素特征[J]. 冰川冻土201739(6): 1 200-1 211.
[9] LIU Xiaoli, GAO Wenhua, WEI Ting, et al. Distribution characteristics of heavy metals in Tibetan Plateau surface soils and its influencing factors[J]. China Industrial Economics2024(4): 2 198-2 207.
刘小莉, 高文华, 魏婷, 等. 青藏高原地表土壤重金属元素组成分布特征及其对周边冰川区重金属沉降的物源示踪意义[J]. 中国环境科学2024(4): 2 198-2 207.
[10] LI Quanlian, ZHANG Chenglong, WU Xiaobo, et al. Heavy metal geochemistry characteristics of cryoconite in glaciers in western China[J]. Geochimica201544(3): 238-244.
李全莲, 张成龙, 武小波, 等. 中国西部冰川冰尘中重金属元素的地球化学特征[J]. 地球化学201544(3): 238-244.
[11] DONG Z W, KANG S C, QIN X, et al. New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China[J]. The Science of the Total Environment2015529: 101-113.
[12] WU Fei. Distribution characteristics and influencing factors of mercury in different environmental media of typical marine glaciers in Qinghai-Tibet Plateau[D]. Guiyang: Guizhou Normal University, 2021.
吴飞. 青藏高原典型海洋性冰川不同环境介质中汞的分布特征及影响因素[D]. 贵阳: 贵州师范大学, 2021.
[13] MA Juanjuan, LI Zhen. Heavy metal concentrations in mosses from Qiyi Glacier region[J]. Environmental Science201435(6): 2 060-2 066.
马娟娟, 李真. 七一冰川地区苔藓中重金属元素含量研究[J]. 环境科学201435(6): 2 060-2 066.
[14] LIU X L, GAO W H, WEI T, et al. Distribution and source of heavy metals in Tibetan Plateau topsoil: new insight into the influence of long-range transported sources to the surrounding glaciers[J]. Environmental Pollution2024, 346. DOI:10.1016/j.envpol.2024.123498 .
[15] CHEN Yali, WENG Liping, MA Jie, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science201938(10): 2 219-2 238.
陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报201938(10): 2 219-2 238.
[16] ZHANG Z S, ZHENG D M, XUE Z S, et al. Identification of anthropogenic contributions to heavy metals in wetland soils of the Karuola Glacier in the Qinghai-Tibetan Plateau[J]. Ecological Indicators201998: 678-685.
[17] DONG Z W, KANG S C, QIN D H, et al. Temporal and diurnal analysis of trace elements in the cryospheric water at remote Laohugou basin in northeast Tibetan Plateau[J]. Chemosphere2017171: 386-398.
[18] LIU N T, CAI X Y, JIA L Y, et al. Quantifying mercury distribution and source contribution in surface soil of Qinghai-Tibetan Plateau using mercury isotopes[J]. Environmental Science & Technology202357(14): 5 903-5 912.
[19] CHEN Peijia, WANG Xun, WANG Dingyong. Lead sources, accumulation and historical deposition in typical glacial retreat area: a case study of Hailuogou glacial retreat area, Qinghai-Tibet Plateau[J]. China Environmental Science202141(8): 3 704-3 713.
陈霈嘉, 王训, 王定勇. 典型冰川退缩区铅的来源、累积及历史沉降: 以青藏高原海螺沟冰川退缩区为例[J]. 中国环境科学202141(8): 3 704-3 713.
[20] GONG Dianqing, WANG Zhaofeng, ZHANG Yili, et al. Enrichment levels and source apportionment of heavy metals in grassland soil of the one river and its two tributaries in Xizang[J/OL]. Environmental Science2025 [2025-04-12]. .
宫殿清, 王兆锋, 张镱锂, 等. 西藏一江两河地区草地土壤重金属的富集程度及其源解析[J/OL]. 环境科学2025 [2025-04-12]. .
[21] TIAN Y, ZHA X J, GAO X, et al. Geochemical characteristics and source apportionment of toxic elements in the Tethys-Himalaya tectonic domain, Tibet, China[J]. Science of the Total Environment2022, 831. DOI:10.1016/j.scitotenv.2022.154863 .
[22] YE Xintong, HU Yang, LIU Qiao, et al. Characteristics of soil microbial communities in typical temperate glacial debris and retreat zones: a case study of the Azha and Midui Glaciers YE[J]. China Environmental Science202444(9): 5 108-5 121.
叶鑫彤, 胡扬, 刘巧, 等. 海洋型冰川表碛与退缩区土壤微生物群落特征——以阿扎冰川和米堆冰川为例[J]. 中国环境科学202444(9): 5 108-5 121.
[23] MA Xinggang, WANG Shijin, QIONG Da, et al. Strategies of deep developing the glacier tourism resources in China: a case study of the Midui Glacier, Tibet[J]. Journal of Glaciology and Geocryology201941(5): 1 264-1 270.
马兴刚, 王世金, 琼达, 等. 中国冰川旅游资源深度开发路径——以西藏米堆冰川为例[J]. 冰川冻土201941(5): 1 264-1 270.
[24] CHEN Kui, ZHOU Yonghua, ZHANG Huaijing, et al. Pollution evaluation of heavy metal element of water and surface sediment in the Dongchang Lake[J]. Periodical of Ocean University of China201242(10): 97-105.
陈奎, 周勇华, 张怀静, 等. 东昌湖水体和表层沉积物重金属元素污染评价[J]. 中国海洋大学学报(自然科学版)201242(10): 97-105.
[25] LI Ping, HUANG Yong, LIN Yun, et al. Distribution, source identification and risk assessment of heavy metals in topsoil of Huairou District in Beijing[J]. Geoscience201832(1): 86-94.
李苹, 黄勇, 林赟, 等. 北京市怀柔区土壤重金属的分布特征、来源分析及风险评价[J]. 现代地质201832(1): 86-94.
[26] ZHANG Xiaoping. Research on the environmental background values of soils in Xizang[J]. Scientia Geographica Sinica199414(1): 49-55, 100.
张晓平. 西藏土壤环境背景值的研究[J]. 地理科学199414(1): 49-55, 100.
[27] MA Yingqun, SHI Yao, QIN Yanwen, et al. Temporal-spatial distribution and pollution assessment of heavy metals in the upper reaches of Hunhe River(Qingyuan Section), northeast China[J]. Environmental Science201435(1): 108-116.
马迎群, 时瑶, 秦延文, 等. 浑河上游(清原段)水环境中重金属时空分布及污染评价[J]. 环境科学201435(1): 108-116.
[28] GUO Jing, WANG Chouming, HUANG Daizhong, et al. Pollution characterization and water quality assessment of Dongting Lake[J]. Environmental Chemistry201938(1): 152-160.
郭晶, 王丑明, 黄代中, 等. 洞庭湖水污染特征及水质评价[J]. 环境化学201938(1): 152-160.
[29] WEI T, DONG Z W, KANG S C, et al. Atmospheric deposition and contamination of trace elements in snowpacks of mountain glaciers in the northeastern Tibetan Plateau[J]. The Science of the Total Environment2019689: 754-764.
[30] SHENG J J, WANG X P, GONG P, et al. Heavy metals of the Tibetan top soils[J]. Environmental Science and Pollution Research201219(8): 3 362-3 370.
[31] YANG An, WANG Yihan, HU Jian, et al. Evaluation and source of heavy metal pollution in surface soil of Qinghai-Tibet Plateau[J]. Environmental Science202041(2): 886-894.
杨安, 王艺涵, 胡健, 等. 青藏高原表土重金属污染评价与来源解析[J]. 环境科学202041(2): 886-894.
[32] DU Haolin, WANG Ying, WANG Jinsong, et al. Distribution characteristics and ecological risk assessment of soil heavy metals in typical watersheds of the Qinghai-Tibet Plateau[J]. Environmental Science202142(9): 4 422-4 431.
杜昊霖, 王莺, 王劲松, 等. 青藏高原典型流域土壤重金属分布特征及其生态风险评价[J]. 环境科学202142(9): 4 422-4 431.
[33] WANG G X, ZENG C, ZHANG F, et al. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: influence factors and spatial variation[J]. The Science of the Total Environment2017581/582: 811-821.
[34] Weige NAN, DONG Zhibao, XUE Liang, et al. Distribution characteristics and ecological risk assessment of heavy metals in roadside soil of important national highways on the Qinghai-Xizang Plateau[J]. Environmental Science202445(8): 4 825-4 836.
南维鸽, 董治宝, 薛亮, 等. 青藏高原重要交通国道路侧土壤重金属分布特征及生态风险评价[J]. 环境科学202445(8): 4 825-4 836.
[35] ZHANG F, XIE Y H, PENG R, et al. Heavy metals and nutrients mediate the distribution of soil microbial community in a typical contaminated farmland of South China[J]. Science of the Total Environment2024, 947. DOI:10.1016/j.scitotenv.2024.174322 .
[36] MA Zhiwei, ZHANG Congzhi, ZHAO Zhanhui, et al. Research progress on soil health cultivation based on woody peat[J]. Ecology and Environmental Sciences202433(12): 1 964-1 977.
马志伟, 张丛志, 赵占辉, 等. 基于木本泥炭的土壤健康培育研究进展[J]. 生态环境学报202433(12): 1 964-1 977.
[37] BAO Y P, BOLAN N S, LAI J H, et al. Interactions between organic matter and Fe (hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: a review[J]. Critical Reviews in Environmental Science and Technology202252(22): 4 016-4 037.
[38] WEI X, BAI X Y, WEN X F, et al. A large and overlooked Cd source in Karst areas: the migration and origin of Cd during soil formation and erosion[J]. The Science of the Total Environment2023, 895. DOI:10.1016/j.scitotenv.2023.165126 .
[39] DOU Weiqiang, AN Yi, QIN Li, et al. Advances in effects of soil pH on cadmium form[J]. Soils202052(3): 439-444.
窦韦强, 安毅, 秦莉, 等. 土壤pH对镉形态影响的研究进展[J]. 土壤202052(3): 439-444.
[40] CHENG D M, LIU X H, ZHAO S N, et al. Influence of the natural colloids on the multi-phase distributions of antibiotics in the surface water from the largest lake in North China[J]. Science of the Total Environment2017578: 649-659.
[41] FAN Jingjing, WANG Sai, TANG Jinpeng, et al. Spatio-temporal patterns and environmental risk of endocrine disrupting chemicals in the Liuxi River[J]. Environmental Science201839(3): 1 053-1 064.
樊静静, 王赛, 唐金鹏, 等. 广州市流溪河水体中6种内分泌干扰素时空分布特征与环境风险[J]. 环境科学201839(3): 1 053-1 064.
[1] 夏亚飞, 刘宇晖, 高庭, 刘承帅. 基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展[J]. 地球科学进展, 2023, 38(4): 331-348.
[2] 曾辉, 周启星. 二硫化钼在水环境修复中的应用前景分析[J]. 地球科学进展, 2022, 37(5): 462-471.
[3] 赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874.
[4] 宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884.
[5] 唐志敏, 侯青叶, 游远航, 杨忠芳, 李括. 珠三角平原区第四系剖面重金属分布特征及其影响因素[J]. 地球科学进展, 2017, 32(8): 885-898.
[6] 杜佳媛, 魏永鹏, 刘菲菲, 代燕辉, 赵建, 王震宇. 氧化石墨烯对环境污染物的吸附行为及吸附机理[J]. 地球科学进展, 2016, 31(11): 1125-1136.
[7] 张兆永, 吉力力·阿不都外力, 姜逢清. 天山山地表层土壤重金属的污染评价及生态风险分析[J]. 地球科学进展, 2014, 29(5): 608-616.
[8] 宋焱,徐颂军,张勇,廖秀英,张林英,杨秀,杨文槐,冯晓丹. 白云山地表水重金属健康风险不确定性评价[J]. 地球科学进展, 2013, 28(9): 1036-1042.
[9] 周永章,沈文杰, 李 勇,窦 磊,李文胜,赖启宏,杜海燕,钟莉莉,梁 婷. 基于通量模型的珠江三角洲经济区土壤重金属地球化学累积预测预警研究[J]. 地球科学进展, 2012, 27(10): 1115-1125.
[10] 温健婷,张霞,张兵,赵冬. 土壤铅含量高光谱遥感反演中波段选择方法研究[J]. 地球科学进展, 2010, 25(6): 625-629.
[11] 陈仁升,刘时银,康尔泗,韩海东,卿文武,王建. 冰川流域径流估算方法探索——以科其喀尔巴西冰川为例[J]. 地球科学进展, 2008, 23(9): 942-951.
[12] 李泽琴,侯佳渝,王奖臻. 矿山环境土壤重金属污染潜在生态风险评价模型探讨[J]. 地球科学进展, 2008, 23(5): 509-516.
[13] 陈翠华,倪师军,何彬彬,张成江. 基于GIS技术的江西德兴地区水系沉积物重金属污染的潜在生态危害研究[J]. 地球科学进展, 2008, 23(3): 312-322.
[14] 赵转军,南忠仁,王胜利,刘晓文,陶燕. 干旱区绿洲土壤共存重金属元素形态变化及生物有效性实验分析[J]. 地球科学进展, 2008, 23(11): 1193-1200.
[15] 闫海涛;胡守云;朱育新. 磁学方法在环境污染研究中的应用[J]. 地球科学进展, 2004, 19(2): 230-236.
阅读次数
全文


摘要