[1] |
ZHAO Halin, ZHAO Xueyong, ZHANG Tonghui,et al. Boundary line on agro-pasture zigzag zone in north China and its problems on eco-environment[J]. Advances in Earth Science,2002,17(5): 739-747.
|
|
赵哈林,赵学勇,张铜会,等. 北方农牧交错带的地理界定及其生态问题[J]. 地球科学进展,2002,17(5): 739-747.
|
[2] |
CHEN Xueping, ZHAO Xueyong, WANG Ruixiong, et al. Research advances on the impact of climate change and LUCC for water resources in the northern agro-pastoral zone in China[J]. Journal of Desert Research, 2022, 42(3): 170-177.
|
|
陈雪萍, 赵学勇, 王瑞雄, 等. 气候变化与土地利用/覆被变化对中国北方农牧交错带水资源影响研究进展[J]. 中国沙漠, 2022, 42(3): 170-177.
|
[3] |
HE Chansheng, ZHANG Baoqing, ZHANG Lanhui, et al. Influence of land use change on surface water thermal process in farming-pastoral ecotone[M]. Beijing: Science Press, 2024.
|
|
贺缠生, 张宝庆, 张兰慧, 等. 农牧交错带土地利用变化对地表水热过程的影响[M]. 北京: 科学出版社, 2024.
|
[4] |
YANG Dawen, XU Zongxue, LI Zhe, et al. Progress and prospect of hydrological sciences[J]. Progress in Geography, 2018, 37(1): 36-45.
|
|
杨大文, 徐宗学, 李哲, 等. 水文学研究进展与展望[J]. 地理科学进展, 2018, 37(1): 36-45.
|
[5] |
BRANCH O, WULFMEYER V. Deliberate enhancement of rainfall using desert plantations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18 841-18 847.
|
[6] |
Meixia LÜ, MA Zhuguo, LI Mingxing. A review on the changing water cycle of the Yellow River Basin under changes in climate, vegetation, and human water use[J]. Transactions of Atmospheric Sciences, 2023, 46(6): 801-812.
|
|
吕美霞, 马柱国, 李明星. 气候变化、植被改变及人类用水与黄河流域水循环的研究进展[J]. 大气科学学报, 2023, 46(6): 801-812.
|
[7] |
TANG Qiuhong. Global change hydrology: terrestrial water cycle and global Chang[J]. Science China: Earth Sciences, 2020, 50(3): 436-438.
|
|
汤秋鸿. 全球变化水文学: 陆地水循环与全球变化[J]. 中国科学: 地球科学, 2020, 50(3): 436-438.
|
[8] |
ZHOU Guoyi, XIA Jun, ZHOU Ping, et al. Not vegetation itself but mis-revegetation reduces water resources[J]. Science China: Earth Sciences,2021,51(2):175-182.
|
|
周国逸,夏军,周平,等. 不恰当的植被恢复导致水资源减少[J]. 中国科学:地球科学,2021,51(2):175-182.
|
[9] |
STAAL A, THEEUWEN J J E, WANG-ERLANDSSON L, et al. Targeted rainfall enhancement as an objective of forestation[J]. Global Change Biology, 2024, 30(1). DOI: 10.1111/gcb.17096 .
|
[10] |
ZHANG B Q, TIAN L, YANG Y T, et al. Revegetation does not decrease water yield in the Loess Plateau of China[J]. Geophysical Research Letters, 2022, 49(9). DOI: 10.1029/2022GL098025 .
|
[11] |
SHAO Ming’an, JIA Xiaoxu, WANG Yunqiang, et al. A review of studies on dried soil layers in the Loess Plateau[J]. Advances in Earth Science, 2016, 31(1): 14-22.
|
|
邵明安, 贾小旭, 王云强, 等. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22.
|
[12] |
GE J, PITMAN A J, GUO W D, et al. Impact of revegetation of the Loess Plateau of China on the regional growing season water balance[J]. Hydrology and Earth System Sciences, 2020, 24(2): 515-533.
|
[13] |
ZHOU S, PARK W A, BERG A M, et al. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38): 18 848-18 853.
|
[14] |
FENG X M, FU B J, PIAO S L, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6: 1 019-1 022.
|
[15] |
LI Y, PIAO S L, LI L Z X, et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China[J]. Science Advances, 2018, 4(5). DOI: 10.1126/sciadv.aar4182 .
|
[16] |
TIAN L, ZHANG B Q, CHEN S Y, et al. Large-scale afforestation enhances precipitation by intensifying the atmospheric water cycle over the Chinese Loess Plateau[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(16). DOI:10.1029/2022JD036738 .
|
[17] |
WANG X J, ZHANG B Q, LI F, et al. Vegetation restoration projects intensify intraregional water recycling processes in the agro-pastoral ecotone of northern China[J]. Journal of Hydrometeorology, 2021. DOI: 10.1175/JHM-D-20-0125.1 .
|
[18] |
LIU Y, GE J, GUO W D, et al. Revisiting biophysical impacts of greening on precipitation over the Loess Plateau of China using WRF with water vapor tracers[J]. Geophysical Research Letters, 2023, 50(8). DOI:10.1029/2023GL102809 .
|
[19] |
SMITH C, BAKER J A, SPRACKLEN D V. Tropical deforestation causes large reductions in observed precipitation[J]. Nature, 2023, 615(7 951): 270-275.
|
[20] |
YANG Z, DOMINGUEZ F. Investigating land surface effects on the moisture transport over south America with a moisture tagging model[J]. Journal of Climate, 2019, 32(19): 6 627-6 644.
|
[21] |
CUI J P, LIAN X, HUNTINGFORD C, et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport[J]. Nature Geoscience, 2022, 15: 982-988.
|
[22] |
WANG-ERLANDSSON L, FETZER I, KEYS P W, et al. Remote land use impacts on river flows through atmospheric teleconnections[J]. Hydrology and Earth System Sciences, 2018, 22(8): 4 311-4 328.
|
[23] |
LIU Mengzhu, WANG Yanfang, PEI Hongwei,et al. The changes of land use and carbon storage in the northern farming-pastoral ecotone under the background of returning farmland to forest(grass)[J]. Journal of Desert Research,2021,41(1): 174-182.
|
|
刘孟竹,王彦芳,裴宏伟,等. 退耕还林(草)背景下中国北方农牧交错带土地利用及碳储量变化[J]. 中国沙漠,2021,41(1): 174-182.
|
[24] |
XUE Y Y, ZHANG B Q, HE C S, et al. Detecting vegetation variations and main drivers over the agropastoral ecotone of northern China through the ensemble empirical mode decomposition method[J]. Remote Sensing, 2019, 11(16). DOI: 10.3390/rs11161860 .
|
[25] |
FANG Zihang, HE Chunyang, LIU Zhifeng, et al. Climate change and future trends in the agro-pastoral transitional zone in northern China: the comprehensive analysis with the historical observation and the model simulation[J]. Journal of Natural Resources, 2020, 35(2): 358-370.
|
|
方梓行, 何春阳, 刘志锋, 等. 中国北方农牧交错带气候变化特点及未来趋势: 基于观测和模拟资料的综合分析[J]. 自然资源学报, 2020, 35(2): 358-370.
|
[26] |
CAO Q, YU D Y, GEORGESCU M, et al. Impacts of land use and land cover change on regional climate: a case study in the agro-pastoral transitional zone of China[J]. Environmental Research Letters, 2015, 10(12). DOI: 10.1016/j.scitotenv.2020.140570 .
|
[27] |
WANG X J, ZHANG B Q, XU X F, et al. Regional water-energy cycle response to land use/cover change in the agro-pastoral ecotone, northwest China[J]. Journal of Hydrology, 2020, 580. DOI:10.1016/j.jhydrol.2019.124246 .
|
[28] |
WANG S J, ZHANG M J, BOWEN G J, et al. Water source signatures in the spatial and seasonal isotope variation of Chinese tap waters[J]. Water Resources Research, 2018, 54(11): 9 131-9 143.
|
[29] |
van der ENT R J, SAVENIJE H H G, SCHAEFLI B, et al. Origin and fate of atmospheric moisture over continents[J]. Water Resources Research, 2010, 46(9). DOI: 10.1029/2010WR009127 .
|
[30] |
DOMINGUEZ F, EIRAS-BARCA J, YANG Z, et al. Amazonian moisture recycling revisited using WRF with water vapor tracers[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(4). DOI: 10.1029/2021JD035259 .
|
[31] |
ZHANG F, HUANG T M, MAN W M, et al. Contribution of recycled moisture to precipitation: a modified D-excess-based model[J]. Geophysical Research Letters, 2021, 48(21). DOI: 10.1029/2021gl095909 .
|
[32] |
DOMINGUEZ F, MIGUEZ-MACHO G, HU H C. WRF with water vapor tracers: a study of moisture sources for the North American monsoon[J]. Journal of Hydrometeorology, 2016, 17(7): 1 915-1 927.
|
[33] |
ARNAULT J, KNOCHE R, WEI J H, et al. Evaporation tagging and atmospheric water budget analysis with WRF: a regional precipitation recycling study for West Africa[J]. Water Resources Research, 2016, 52(3): 1 544-1 567.
|
[34] |
HE Jie, YANG Kun, LI Xin, et al. China meteorological forcing dataset v2.0 (1951-2024)[DS/OL]. (2024-10-23 2024-10-23)[2025-01-24]. .
|
|
何杰, 阳坤, 李新, 等. 中国区域地面气象要素驱动数据集v2.0(1951-2024)[DS/OL]. 国家青藏高原数据中心(2024-10-23)[2025-01-24]. .
|
[35] |
LI Xuliang. Impact of ecological restoration on evapotranspiration and optimization of land use patterns in the agro-pastoral ecotone of northern China[D]. Lanzhou: Lanzhou University, 2024.
|
|
李旭亮.北方农牧交错带生态恢复对蒸散发的影响及土地利用格局优化研究[D]. 兰州:兰州大学,2024.
|
[36] |
ESA. Land Cover CCI Product User Guide Version 2[Z]. Technical Report, 2017[2025-01-24]. maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf.
|
[37] |
LIANG S L, ZHAO X, LIU S H, et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies[J]. International Journal of Digital Earth, 2013, 6(): 5-33.
|
[38] |
PINZON J E, PAK E W, TUCKER C J, et al. Global vegetation greenness (NDVI) from AVHRR GIMMS-3G+: 1 981-2 022(Version 1)[DS/OL]. ORNL Distributed Active Archive Center(2023-09-01) [2025-01-24]. .
|
[39] |
RUNNING S W, ZHAO M S. User’s Guide Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm [DS]. Washington: MODIS Land Team, 2025: 1-28.
|
[40] |
DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597.
|
[41] |
LIU Z J, LIU Y S, WANG S S, et al. Evaluation of spatial and temporal performances of ERA-interim precipitation and temperature in mainland China [J]. Journal of Climate, 2018, 31(11): 4 347-4 365.
|
[42] |
BURDE G I, ZANGVIL A. The estimation of regional precipitation recycling. part I: review of recycling models[J]. Journal of Climate, 2001, 14(12): 2 497-2 508.
|
[43] |
DOMINGUEZ F, KUMAR P, LIANG X Z, et al. Impact of atmospheric moisture storage on precipitation recycling[J]. Journal of Climate, 2006, 19(8): 1 513-1 530.
|
[44] |
SHAO R, ZHANG B Q, SU T X, et al. Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(22): 11 783-11 802.
|
[45] |
SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 3[J]. NCAR Technical Note, 2008, 475(125). DOI:10.13140/RG.2.1.2310.6645 .
|
[46] |
ASHARAF S, DOBLER A, AHRENS B. Soil moisture-precipitation feedback processes in the Indian summer monsoon season[J]. Journal of Hydrometeorology, 2012, 13(5): 1 461-1 474.
|
[47] |
ZHAO R B, FENG X M, ZHOU C W, et al. El Niño Southern oscillation events contribute significantly to the interannual variations of dust activity over East Asia[J]. Atmospheric Research, 2025, 315. DOI: 10.2139/ssrn.4922115 .
|
[48] |
WANG S, FU B J, WEI F L, et al. Drylands contribute disproportionately to observed global productivity increases[J]. Science Bulletin, 2023, 68(2): 224-232.
|
[49] |
KEENAN T F, HOLLINGER D Y, BOHRER G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature, 2013, 499(7 458): 324-327.
|
[50] |
CAO M Z, WANG W G, WEI J, et al. Revegetation impacts on moisture recycling and precipitation trends in the Chinese Loess Plateau[J]. Water Resources Research, 2024, 60(12). DOI:10.1029/2024WR038199 .
|
[51] |
GAO S Q, LÜ Y H, JIANG X H. Increased precipitation and vegetation cover synergistically enhanced the availability and effectiveness of water resources in a dryland region[J]. Journal of Hydrology, 2025, 654. DOI: 10.1029/2024WR038199 .
|
[52] |
JIA X X, SHAO M A, WEI X R, et al. Policy development for sustainable soil water use on China’s Loess Plateau[J]. Science Bulletin, 2020, 65(24): 2 053-2 056.
|
[53] |
XU J P, LIU M X, YI J, et al. Influence of vegetation restoration strategies on seasonal soil water deficit in a subtropical hilly catchment of southwest China[J]. CATENA, 2025, 248. DOI: 10.1016/j.catena.2024.108578 .
|
[54] |
LIN X, ZHANG S W, ZHAO X Y, et al. Global thresholds for the climate-driven effects of vegetation restoration on runoff and soil erosion[J]. Journal of Hydrology, 2025, 647. DOI: 10.1016/j.jhydrol.2024.132374 .
|
[55] |
LUAN J K, MA N. Responses of seasonal hydrological processes to vegetation change in the Yellow River Basin[J]. Journal of Hydrology, 2025, 660. DOI: 10.1016/j.jhydrol.2025.133449 .
|
[56] |
ZHANG B Q. Albedo-driven hydroclimatic impacts of large-scale vegetation restoration should not be overlooked[J]. Nature Water, 2025, 3: 358-359.
|
[57] |
SANTANELLO J A. Results from Local Land-Atmosphere Coupling(LoCo) Project[J]. GEWEX News, 2011, 21(4): 7-9.
|
[58] |
SANTANELLO J A, ROUNDY J, DIRMEYER P A. Quantifying the land-atmosphere coupling behavior in modern reanalysis products over the U.S. southern great Plains[J]. Journal of Climate, 2015, 28(14): 5 813-5 829.
|
[59] |
HOHENEGGER C, BROCKHAUS P, BRETHERTON C S, et al. The soil moisture-precipitation feedback in simulations with explicit and parameterized convection[J]. Journal of Climate, 2009, 22(19): 5 003-5 020.
|
[60] |
KUCHARSKI F, MOLTENI F, KING M P, et al. On the need of intermediate complexity general circulation models: a “SPEEDY” example[J]. Bulletin of the American Meteorological Society, 2013, 94(1): 25-30.
|
[61] |
WANG X J, ZHANG Z Y, ZHANG B Q, et al. Quantifying the impact of land use and land cover change on moisture recycling with convection-permitting WRF-tagging modeling in the agro-pastoral ecotone of northern China[J]. Journal of Geophysical Research: Atmospheres, 2023, 128(8). DOI: 10.1029/2022JD038421 .
|
[62] |
SCHÄR C, LÜTHI D, BEYERLE U, et al. The soil-precipitation feedback: a process study with a regional climate model[J]. Journal of Climate, 1999, 12(3): 722-741.
|
[63] |
ALESSI M J, HERRERA D A, EVANS C P, et al. Soil moisture conditions determine land-atmosphere coupling and drought risk in the northeastern United States[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(6). DOI: 10.1029/2021JD034740 .
|
[64] |
PEARCE F. Weather makers[J]. Science, 2020, 368(6 497): 1 302-1 305.
|