地球科学进展 ›› 2025, Vol. 40 ›› Issue (7): 737 -752. doi: 10.11867/j.issn.1001-8166.2025.049

研究论文 上一篇    下一篇

北方农牧交错带植被恢复对区域陆气相互作用和水循环的影响
王学锦1,3(), 张宝庆1,3, 贺缠生1,2,3()   
  1. 1.兰州大学 资源环境学院,甘肃 兰州 730000
    2.School of Geography Environment and Tourism,Western Michigan University,Kalamazoo,Michigan 49008,USA
    3.兰州大学;大野口水文过程观测研究站,甘肃 兰州 730000
  • 收稿日期:2025-03-24 修回日期:2025-05-12 出版日期:2025-07-10
  • 通讯作者: 贺缠生 E-mail:wangxuejin@lzu.edu.cn;he@wmich.edu
  • 基金资助:
    国家自然科学基金项目(42030501);国家自然科学基金项目(42401011);甘肃省自然科学基金项目(25JRRA662)

Impacts of Vegetation Restoration in the Agro-Pastoral Ecotone of Northern China on Regional Land-Atmosphere Interactions and Hydrological Cycle

Xuejin WANG1,3(), Baoqing ZHANG1,3, Chansheng HE1,2,3()   

  1. 1.College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
    2.School of Geography, Environment and Tourism, Western Michigan University, Kalamazoo, Michigan 49008, USA
    3.Dayekou Hydrological Process Observation and Research Station, Lanzhou University, Lanzhou 730000, China
  • Received:2025-03-24 Revised:2025-05-12 Online:2025-07-10 Published:2025-09-15
  • Contact: Chansheng HE E-mail:wangxuejin@lzu.edu.cn;he@wmich.edu
  • About author:WANG Xuejin, research areas include global change and hydrological processes. E-mail: wangxuejin@lzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42030501);The National Natural Science Foundation of Gansu(25JRRA662)

北方农牧交错带是我国农牧业协同发展核心区和生态安全屏障。植被恢复显著改变了该区生态环境和水文气候状况,但现有研究对其影响过程和机制尚未充分阐明。利用遥感和再分析数据,结合WRF-tagging模型,探究了北方农牧交错带植被恢复对区域陆气相互作用和水循环的影响。结果表明:①北方农牧交错带2000—2015年植被指数呈显著增加趋势,陆地生态系统的固碳能力逐渐提升,水分利用效率整体表现为增加趋势。②植被恢复使得该区域蒸散发显著增加,并通过水分再循环过程贡献了北方农牧交错带降水的10.8%,北方农牧交错带降水再循环率呈显著增加趋势,表明植被恢复通过增强区域水分再循环过程增加了对本地降水的贡献;东亚夏季风和中纬度西风的协同作用主导北方农牧交错带生长季蒸散发水汽输送,植被恢复通过植被蒸腾作用增加了区域水汽通量,提升了降水形成过程中再循环水汽比例,促进降水再循环过程,对下风向区域降水产生积极作用。③植被恢复通过降低反照率,以增加净辐射吸收、提升边界层湍流动能、促进水汽垂直混合;并通过增加蒸散发与水平流入水汽输入来提高大气湿度、降低抬升凝结高度等,协同改变湿静能与对流有效势能,最终触发深层对流发展,进而改变区域降水效率及降水。研究可为农牧交错带植被恢复可持续建设和水资源安全提供科学支撑。

The Agro-Pastoral Ecotone of Northern China (APENC) serves as both a core area for grain and livestock production and a critical ecological barrier in northern China. Vegetation restoration has significantly changed the ecological environment and hydrometeorological conditions of the APENC; however, existing studies have not fully elucidated its impact processes and mechanisms. The results demonstrated significant upward trends in the Leaf Area Index (LAI) and Normalized Difference Vegetation Index (NDVI) across the APENC during 2000-2015, accompanied by an improved carbon sequestration capacity in terrestrial ecosystems and an overall increase in water use efficiency. Large-scale restoration projects have amplified evapotranspiration (ET) in most APENC regions, with enhanced ET-derived moisture contributing to 10.8% of precipitation through hydrological recycling processes. A pronounced increase in the Precipitation Recycling Ratio (PRR) was observed in APENC, indicating that vegetation restoration intensified the regional hydrological cycling to augment local precipitation. Synergistic effects between the East Asian summer monsoon and mid-latitude westerlies dominate evaporated moisture transport during the growing seasons. Vegetation restoration amplifies the regional vapor flux through enhanced transpiration, elevates the recycled moisture proportion in precipitation formation, and produces positive feedback on precipitation via intensified moisture recycling processes, making substantial contributions to precipitation in downwind regions. Vegetation restoration alters precipitation patterns through two synergistic mechanisms: albedo reduction enhances net radiation absorption, intensifies boundary layer turbulent energy, and promotes vertical moisture mixing; and Combined ET enhancement and horizontal vapor influx increase atmospheric humidity while lowering lifting condensation levels. These processes jointly modify the moist static energy and convective available potential energy, ultimately triggering deep convection development that alters the precipitation efficiency and reshapes the spatial distribution.

中图分类号: 

图1 北方农牧交错带地理位置及气候特征
(a)地理位置分布;(b)1982—2017年均气温分布;(c)1982—2017年均降水的空间分布及等值线,气温及降水数据来源于中国区域地面气象要素驱动数据集34
Fig. 1 Geographical location and climatic characteristics of the Agro-Pastoral Ecotone of Northern ChinaAPENC
(a) Geographical distribution; (b) Spatial pattern of mean annual temperature during 1982-2017; (c) Spatial distribution of mean annual precipitation with isohyets during 1982-2017. Meteorological data derived from the China Meteorological Forcing Dataset34.
图2 大气水汽传输概念图
Fig. 2 Conceptual figure of atmospheric vapor transport
图3 WRF-tagging基本概念图和植被情景及其叶面积指数差异
(b)~(d)是以2010年土地利用为例设置情景试验,其中:(b)为2010实际土地利用,(c)为造林情景,(d)为土地退化情景;(e)~(g)为造林/退化情景与实际状况的LAI差异的时空特征。
Fig. 3 Conceptual framework of WRF-tagging and vegetation scenarios with Leaf Area IndexLAIvariations
(b)~(d)for scenario experiments based on 2010 land use patterns;(b)Actual land use in 2010,(c)Afforestation scenario,(d)Land degradation scenario;(e)~(g)for spatiotemporal characteristics of LAI differences between restoration/degradation scenarios and baseline conditions.
附图1 (http://www.adearth.ac.cn/fileup/1001-8166/SUPPL/supplFile_art_20250822103328.jpg)
表1 WRF-tagging植被情景试验设置
Table 1 Experimental design of WRF-tagging vegetation scenarios
图4 20002015年北方农牧交错带叶面积指数和归一化植被指数时空变化特征
(a)多年平均LAI空间分布;(b)LAI趋势的空间分布;(c)LAI时间变化趋势;(d)多年平均NDVI空间分布;(e)NDVI趋势的空间分布;(f)NDVI时间变化趋势。
Fig. 4 Spatiotemporal dynamics of Leaf Area IndexLAIand Normalized Difference Vegetation IndexNDVIvariations in the Agro-Pastoral Ecotone of northern China during 2000-2015
(a) Spatial pattern of multi-year mean LAI; (b) Spatial distribution of LAI trends; (c) Temporal evolution of LAI; (d) Spatial pattern of multi-year mean NDVI; (e) Spatial distribution of NDVI trends; (f) Temporal evolution of NDVI.
图5 20002015年北方农牧交错带多年平均 GPPa)、ETc)和WUEe)及其各自变化趋势(cdf)的空间分布
GPP:总初级生产力;ET:蒸散发;WUE:水分利用效率;图中阴影区域表示变化趋势通过95%显著性检验的区域。
Fig. 5 Spatial patterns of multi-year mean GPPa), ETc), WUEeand their respective trend distributionscdfin the Agro-Pastoral Ecotone of Northern China during 2000-2015
GPP: Gross Primary Productivity; ET: Evapotranspiration; WUE: Water Use Efficiency;Shaded areas denote regions with statistically significant trends at the 95% confidence level.
附图2 (http://www.adearth.ac.cn/fileup/1001-8166/SUPPL/supplFile_art_20250822103342.jpg)
图6 20002015动态和静态植被情景下蒸散发变化趋势及差异(DV ET减去no-DV ET)的空间分布
图中阴影区域表示变化差异通过95%显著性检验的区域。
Fig. 6 EvapotranspirationETtrend under dynamic and static vegetation scenarios and the spatial distribution in the difference between DV ET and no-DV ET during 2000-2015
Statistically significant (t-test, p<0.05) is marked with hatched areas.
图7 动态再循环模型计算的北方农牧交错带20002015年再循环降水量(柱状)和动态、静态植被情景下降水再循环率的变化趋势
Fig. 7 Recycled precipitationbar representationderived from the dynamic recycling model model and Precipitation Recycling RatioPRRtrend under dynamic/static vegetation scenarios in the agro-pastoral ecotone of northern China during 2000-2015
附图3 (http://www.adearth.ac.cn/fileup/1001-8166/SUPPL/supplFile_art_20250822103353.jpg)
图8 WRF-tagging模拟的20002015年生长季追踪区域不同试验蒸散发(a)、标记降水(b)、降水(c)和降水再循环率(d)小提琴图
Fig. 8 Violin plots of WRF-tagging simulated EvapotranspirationET) (a), Ptagb), Pc), and Precipitation Recycling RatioPRR) (d
图9 WRF-tagging模拟的20002015年生长季AfDe情景试验与Ac试验标记降水[(aAf-Ac,(bDe-Ac)]差异和水分再循环率差异[(cAf-Ac,(dDe-Ac)]的空间分布
黑色斜线表示差异通过显著性检验(t检验,p<0.05),蓝色框表示追踪区域。
Fig. 9 The spatial pattern of the differences in tagged precipitation Ptag and PRR from WRF-tagging simulations during the growing season from 2000 to 2015aandcfor the Afforestation scenario minus the Actual scenario, (banddfor the Degradation scenario minus the Actual scenario
Statistically significant points (t-test, p < 0.05) are marked with hatched areas, the blue box indicates the tagged region.
附图4 (http://www.adearth.ac.cn/fileup/1001-8166/SUPPL/supplFile_art_20250822103404.jpg)
图10 地表植被变化—降水反馈作用机制
Fig. 10 Surface vegetation dynamics-precipitation feedback mechanisms
[1] ZHAO Halin, ZHAO Xueyong, ZHANG Tonghui,et al. Boundary line on agro-pasture zigzag zone in north China and its problems on eco-environment[J]. Advances in Earth Science200217(5): 739-747.
赵哈林,赵学勇,张铜会,等. 北方农牧交错带的地理界定及其生态问题[J]. 地球科学进展200217(5): 739-747.
[2] CHEN Xueping, ZHAO Xueyong, WANG Ruixiong, et al. Research advances on the impact of climate change and LUCC for water resources in the northern agro-pastoral zone in China[J]. Journal of Desert Research202242(3): 170-177.
陈雪萍, 赵学勇, 王瑞雄, 等. 气候变化与土地利用/覆被变化对中国北方农牧交错带水资源影响研究进展[J]. 中国沙漠202242(3): 170-177.
[3] HE Chansheng, ZHANG Baoqing, ZHANG Lanhui, et al. Influence of land use change on surface water thermal process in farming-pastoral ecotone[M]. Beijing: Science Press, 2024.
贺缠生, 张宝庆, 张兰慧, 等. 农牧交错带土地利用变化对地表水热过程的影响[M]. 北京: 科学出版社, 2024.
[4] YANG Dawen, XU Zongxue, LI Zhe, et al. Progress and prospect of hydrological sciences[J]. Progress in Geography201837(1): 36-45.
杨大文, 徐宗学, 李哲, 等. 水文学研究进展与展望[J]. 地理科学进展201837(1): 36-45.
[5] BRANCH O, WULFMEYER V. Deliberate enhancement of rainfall using desert plantations[J]. Proceedings of the National Academy of Sciences of the United States of America2019116(38): 18 841-18 847.
[6] Meixia LÜ, MA Zhuguo, LI Mingxing. A review on the changing water cycle of the Yellow River Basin under changes in climate, vegetation, and human water use[J]. Transactions of Atmospheric Sciences202346(6): 801-812.
吕美霞, 马柱国, 李明星. 气候变化、植被改变及人类用水与黄河流域水循环的研究进展[J]. 大气科学学报202346(6): 801-812.
[7] TANG Qiuhong. Global change hydrology: terrestrial water cycle and global Chang[J]. Science China: Earth Sciences202050(3): 436-438.
汤秋鸿. 全球变化水文学: 陆地水循环与全球变化[J]. 中国科学: 地球科学202050(3): 436-438.
[8] ZHOU Guoyi, XIA Jun, ZHOU Ping, et al. Not vegetation itself but mis-revegetation reduces water resources[J]. Science China: Earth Sciences202151(2):175-182.
周国逸,夏军,周平,等. 不恰当的植被恢复导致水资源减少[J]. 中国科学:地球科学202151(2):175-182.
[9] STAAL A, THEEUWEN J J E, WANG-ERLANDSSON L, et al. Targeted rainfall enhancement as an objective of forestation[J]. Global Change Biology202430(1). DOI: 10.1111/gcb.17096 .
[10] ZHANG B Q, TIAN L, YANG Y T, et al. Revegetation does not decrease water yield in the Loess Plateau of China[J]. Geophysical Research Letters202249(9). DOI: 10.1029/2022GL098025 .
[11] SHAO Ming’an, JIA Xiaoxu, WANG Yunqiang, et al. A review of studies on dried soil layers in the Loess Plateau[J]. Advances in Earth Science201631(1): 14-22.
邵明安, 贾小旭, 王云强, 等. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展201631(1): 14-22.
[12] GE J, PITMAN A J, GUO W D, et al. Impact of revegetation of the Loess Plateau of China on the regional growing season water balance[J]. Hydrology and Earth System Sciences202024(2): 515-533.
[13] ZHOU S, PARK W A, BERG A M, et al. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity[J]. Proceedings of the National Academy of Sciences of the United States of America2019116(38): 18 848-18 853.
[14] FENG X M, FU B J, PIAO S L, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change20166: 1 019-1 022.
[15] LI Y, PIAO S L, LI L Z X, et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China[J]. Science Advances20184(5). DOI: 10.1126/sciadv.aar4182 .
[16] TIAN L, ZHANG B Q, CHEN S Y, et al. Large-scale afforestation enhances precipitation by intensifying the atmospheric water cycle over the Chinese Loess Plateau[J]. Journal of Geophysical Research: Atmospheres2022127(16). DOI:10.1029/2022JD036738 .
[17] WANG X J, ZHANG B Q, LI F, et al. Vegetation restoration projects intensify intraregional water recycling processes in the agro-pastoral ecotone of northern China[J]. Journal of Hydrometeorology2021. DOI: 10.1175/JHM-D-20-0125.1 .
[18] LIU Y, GE J, GUO W D, et al. Revisiting biophysical impacts of greening on precipitation over the Loess Plateau of China using WRF with water vapor tracers[J]. Geophysical Research Letters202350(8). DOI:10.1029/2023GL102809 .
[19] SMITH C, BAKER J A, SPRACKLEN D V. Tropical deforestation causes large reductions in observed precipitation[J]. Nature2023615(7 951): 270-275.
[20] YANG Z, DOMINGUEZ F. Investigating land surface effects on the moisture transport over south America with a moisture tagging model[J]. Journal of Climate201932(19): 6 627-6 644.
[21] CUI J P, LIAN X, HUNTINGFORD C, et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport[J]. Nature Geoscience202215: 982-988.
[22] WANG-ERLANDSSON L, FETZER I, KEYS P W, et al. Remote land use impacts on river flows through atmospheric teleconnections[J]. Hydrology and Earth System Sciences201822(8): 4 311-4 328.
[23] LIU Mengzhu, WANG Yanfang, PEI Hongwei,et al. The changes of land use and carbon storage in the northern farming-pastoral ecotone under the background of returning farmland to forest(grass)[J]. Journal of Desert Research202141(1): 174-182.
刘孟竹,王彦芳,裴宏伟,等. 退耕还林(草)背景下中国北方农牧交错带土地利用及碳储量变化[J]. 中国沙漠202141(1): 174-182.
[24] XUE Y Y, ZHANG B Q, HE C S, et al. Detecting vegetation variations and main drivers over the agropastoral ecotone of northern China through the ensemble empirical mode decomposition method[J]. Remote Sensing201911(16). DOI: 10.3390/rs11161860 .
[25] FANG Zihang, HE Chunyang, LIU Zhifeng, et al. Climate change and future trends in the agro-pastoral transitional zone in northern China: the comprehensive analysis with the historical observation and the model simulation[J]. Journal of Natural Resources202035(2): 358-370.
方梓行, 何春阳, 刘志锋, 等. 中国北方农牧交错带气候变化特点及未来趋势: 基于观测和模拟资料的综合分析[J]. 自然资源学报202035(2): 358-370.
[26] CAO Q, YU D Y, GEORGESCU M, et al. Impacts of land use and land cover change on regional climate: a case study in the agro-pastoral transitional zone of China[J]. Environmental Research Letters201510(12). DOI: 10.1016/j.scitotenv.2020.140570 .
[27] WANG X J, ZHANG B Q, XU X F, et al. Regional water-energy cycle response to land use/cover change in the agro-pastoral ecotone, northwest China[J]. Journal of Hydrology2020, 580. DOI:10.1016/j.jhydrol.2019.124246 .
[28] WANG S J, ZHANG M J, BOWEN G J, et al. Water source signatures in the spatial and seasonal isotope variation of Chinese tap waters[J]. Water Resources Research201854(11): 9 131-9 143.
[29] van der ENT R J, SAVENIJE H H G, SCHAEFLI B, et al. Origin and fate of atmospheric moisture over continents[J]. Water Resources Research201046(9). DOI: 10.1029/2010WR009127 .
[30] DOMINGUEZ F, EIRAS-BARCA J, YANG Z, et al. Amazonian moisture recycling revisited using WRF with water vapor tracers[J]. Journal of Geophysical Research: Atmospheres2022127(4). DOI: 10.1029/2021JD035259 .
[31] ZHANG F, HUANG T M, MAN W M, et al. Contribution of recycled moisture to precipitation: a modified D-excess-based model[J]. Geophysical Research Letters202148(21). DOI: 10.1029/2021gl095909 .
[32] DOMINGUEZ F, MIGUEZ-MACHO G, HU H C. WRF with water vapor tracers: a study of moisture sources for the North American monsoon[J]. Journal of Hydrometeorology201617(7): 1 915-1 927.
[33] ARNAULT J, KNOCHE R, WEI J H, et al. Evaporation tagging and atmospheric water budget analysis with WRF: a regional precipitation recycling study for West Africa[J]. Water Resources Research201652(3): 1 544-1 567.
[34] HE Jie, YANG Kun, LI Xin, et al. China meteorological forcing dataset v2.0 (1951-2024)[DS/OL]. (2024-10-23 2024-10-23)[2025-01-24]. .
何杰, 阳坤, 李新, 等. 中国区域地面气象要素驱动数据集v2.0(1951-2024)[DS/OL]. 国家青藏高原数据中心(2024-10-23)[2025-01-24]. .
[35] LI Xuliang. Impact of ecological restoration on evapotranspiration and optimization of land use patterns in the agro-pastoral ecotone of northern China[D]. Lanzhou: Lanzhou University, 2024.
李旭亮.北方农牧交错带生态恢复对蒸散发的影响及土地利用格局优化研究[D]. 兰州:兰州大学,2024.
[36] ESA. Land Cover CCI Product User Guide Version 2[Z]. Technical Report2017[2025-01-24]. maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf.
[37] LIANG S L, ZHAO X, LIU S H, et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies[J]. International Journal of Digital Earth20136(): 5-33.
[38] PINZON J E, PAK E W, TUCKER C J, et al. Global vegetation greenness (NDVI) from AVHRR GIMMS-3G+: 1 981-2 022(Version 1)[DS/OL]. ORNL Distributed Active Archive Center(2023-09-01) [2025-01-24]. .
[39] RUNNING S W, ZHAO M S. User’s Guide Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm [DS]. Washington: MODIS Land Team, 2025: 1-28.
[40] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society2011137(656): 553-597.
[41] LIU Z J, LIU Y S, WANG S S, et al. Evaluation of spatial and temporal performances of ERA-interim precipitation and temperature in mainland China [J]. Journal of Climate201831(11): 4 347-4 365.
[42] BURDE G I, ZANGVIL A. The estimation of regional precipitation recycling. part I: review of recycling models[J]. Journal of Climate200114(12): 2 497-2 508.
[43] DOMINGUEZ F, KUMAR P, LIANG X Z, et al. Impact of atmospheric moisture storage on precipitation recycling[J]. Journal of Climate200619(8): 1 513-1 530.
[44] SHAO R, ZHANG B Q, SU T X, et al. Estimating the increase in regional evaporative water consumption as a result of vegetation restoration over the Loess Plateau, China[J]. Journal of Geophysical Research: Atmospheres2019124(22): 11 783-11 802.
[45] SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 3[J]. NCAR Technical Note2008475(125). DOI:10.13140/RG.2.1.2310.6645 .
[46] ASHARAF S, DOBLER A, AHRENS B. Soil moisture-precipitation feedback processes in the Indian summer monsoon season[J]. Journal of Hydrometeorology201213(5): 1 461-1 474.
[47] ZHAO R B, FENG X M, ZHOU C W, et al. El Niño Southern oscillation events contribute significantly to the interannual variations of dust activity over East Asia[J]. Atmospheric Research2025, 315. DOI: 10.2139/ssrn.4922115 .
[48] WANG S, FU B J, WEI F L, et al. Drylands contribute disproportionately to observed global productivity increases[J]. Science Bulletin202368(2): 224-232.
[49] KEENAN T F, HOLLINGER D Y, BOHRER G, et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J]. Nature2013499(7 458): 324-327.
[50] CAO M Z, WANG W G, WEI J, et al. Revegetation impacts on moisture recycling and precipitation trends in the Chinese Loess Plateau[J]. Water Resources Research202460(12). DOI:10.1029/2024WR038199 .
[51] GAO S Q, LÜ Y H, JIANG X H. Increased precipitation and vegetation cover synergistically enhanced the availability and effectiveness of water resources in a dryland region[J]. Journal of Hydrology2025, 654. DOI: 10.1029/2024WR038199 .
[52] JIA X X, SHAO M A, WEI X R, et al. Policy development for sustainable soil water use on China’s Loess Plateau[J]. Science Bulletin202065(24): 2 053-2 056.
[53] XU J P, LIU M X, YI J, et al. Influence of vegetation restoration strategies on seasonal soil water deficit in a subtropical hilly catchment of southwest China[J]. CATENA2025, 248. DOI: 10.1016/j.catena.2024.108578 .
[54] LIN X, ZHANG S W, ZHAO X Y, et al. Global thresholds for the climate-driven effects of vegetation restoration on runoff and soil erosion[J]. Journal of Hydrology2025, 647. DOI: 10.1016/j.jhydrol.2024.132374 .
[55] LUAN J K, MA N. Responses of seasonal hydrological processes to vegetation change in the Yellow River Basin[J]. Journal of Hydrology2025, 660. DOI: 10.1016/j.jhydrol.2025.133449 .
[56] ZHANG B Q. Albedo-driven hydroclimatic impacts of large-scale vegetation restoration should not be overlooked[J]. Nature Water20253: 358-359.
[57] SANTANELLO J A. Results from Local Land-Atmosphere Coupling(LoCo) Project[J]. GEWEX News201121(4): 7-9.
[58] SANTANELLO J A, ROUNDY J, DIRMEYER P A. Quantifying the land-atmosphere coupling behavior in modern reanalysis products over the U.S. southern great Plains[J]. Journal of Climate201528(14): 5 813-5 829.
[59] HOHENEGGER C, BROCKHAUS P, BRETHERTON C S, et al. The soil moisture-precipitation feedback in simulations with explicit and parameterized convection[J]. Journal of Climate200922(19): 5 003-5 020.
[60] KUCHARSKI F, MOLTENI F, KING M P, et al. On the need of intermediate complexity general circulation models: a “SPEEDY” example[J]. Bulletin of the American Meteorological Society201394(1): 25-30.
[61] WANG X J, ZHANG Z Y, ZHANG B Q, et al. Quantifying the impact of land use and land cover change on moisture recycling with convection-permitting WRF-tagging modeling in the agro-pastoral ecotone of northern China[J]. Journal of Geophysical Research: Atmospheres2023128(8). DOI: 10.1029/2022JD038421 .
[62] SCHÄR C, LÜTHI D, BEYERLE U, et al. The soil-precipitation feedback: a process study with a regional climate model[J]. Journal of Climate199912(3): 722-741.
[63] ALESSI M J, HERRERA D A, EVANS C P, et al. Soil moisture conditions determine land-atmosphere coupling and drought risk in the northeastern United States[J]. Journal of Geophysical Research: Atmospheres2022127(6). DOI: 10.1029/2021JD034740 .
[64] PEARCE F. Weather makers[J]. Science2020368(6 497): 1 302-1 305.
[1] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
阅读次数
全文


摘要