地球科学进展 ›› 2023, Vol. 38 ›› Issue (9): 931 -942. doi: 10.11867/j.issn.1001-8166.2023.052

研究论文 上一篇    下一篇

常绿林“导度—光合”模型斜率参数优化与蒸腾估算改进
金佳鑫 1 , 2 , 6( ), 张凤焰 2, 王焓 3, 刘颖 2, 侯炜烨 2, 蔡裕龙 2, 潘晓龙 2, 王颖 4, 朱求安 2 , 6, 方秀琴 2, 颜亦琪 5, 任立良 1 , 2( )   
  1. 1.河海大学 水灾害防御全国重点实验室,江苏 南京 210098
    2.河海大学 水文水资源学院,江苏 南京 210024
    3.清华大学 地球系统科学系,北京 100084
    4.南京晓庄学院 旅游与 社会管理学院,江苏 南京 211171
    5.黄河水利委员会水文局,河南 郑州 450004
    6.国家科技资源共享服务平台 国家地球系统科学数据中心,北京 100101
  • 收稿日期:2023-05-15 修回日期:2023-07-29 出版日期:2023-09-10
  • 通讯作者: 任立良 E-mail:jiaxinking@hhu.edu.cn;RLL@hhu.edu.cn
  • 基金资助:
    国家自然科学基金项目(U2243203)

Optimization of the Stomatal Conductance Slope in the Conductance-Photosynthesis Model and Improved Estimation of Transpiration in Evergreen Forests

Jiaxin JIN 1 , 2 , 6( ), Fengyan ZHANG 2, Han WANG 3, Ying LIU 2, Weiye HOU 2, Yulong CAI 2, Xiaolong PAN 2, Ying WANG 4, Qiuan ZHU 2 , 6, Xiuqin FANG 2, Yiqi YAN 5, Liliang REN 1 , 2( )   

  1. 1.The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
    2.College of Hydrology and Water Resourses, Hohai University, Nanjing 210024, China
    3.Department of Earth System Science, Tsinghua University, Beijing 100084, China
    4.Tourism and Social Administration College, Nanjing Xiaozhuang University, Nanjing 211171, China
    5.Hydrology Bureau of Yellow River Conservancy Commission, Zhengzhou 450004, China
    6.National Earth System Science Data Center, National Science & Technology Infrastructure of China, Beijing 100101, China
  • Received:2023-05-15 Revised:2023-07-29 Online:2023-09-10 Published:2023-09-25
  • Contact: Liliang REN E-mail:jiaxinking@hhu.edu.cn;RLL@hhu.edu.cn
  • About author:JIN Jiaxin, Associate professor, research area includes eco-hydrological remote sensing. E-mail: jiaxinking@hhu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(U2243203)

“导度—光合”模型广泛应用于植被蒸腾估算,其中气孔导度斜率是模型的核心参数,通常用一个特定于生物群系的固定值进行参数化。然而,有研究指出气孔导度斜率存在季节性变化,故常数化气孔导度斜率的方案将导致植被蒸腾估算产生较大的不确定性。因此,如何优化气孔导度斜率的参数方案是提升植被蒸腾估算精度的关键。已有研究表明,使用叶面积指数对气孔导度斜率进行动态参数化可以有效改进对落叶林植被蒸腾的估算,但目前尚不清楚该方法是否同样适用于林冠季节变化不明显的常绿林。此外,最优性原理进一步解释气孔导度斜率为温度的函数。因此,利用温度模拟气孔导度斜率的效果是否优于叶面积指数也有待研究。针对以上问题,选取6个FLUXNET常绿林站点研究气孔导度斜率与叶面积指数和气温的关系,并对比2种参数化方案的模拟结果。结果显示,气孔导度斜率在各站点都随叶面积指数和温度的变化而变化,二者均呈现显著的负相关关系,动态参数化方案结果均优于常量气孔导度斜率静态参数化方案。这表明在常绿林中利用叶面积指数对气孔导度斜率模拟仍然有效,但温度对气孔导度斜率的解释能力(R2=0.45±0.12)比叶面积指数的(R2=0.28±0.23)更强。进一步对比基于叶面积指数和温度参数方案所得的气孔导度和植被蒸腾,发现在日尺度上基于温度的方案比基于叶面积指数的结果改进更明显,显著降低了植被蒸腾估算的均方根误差(26.0%±24.4%)。以上结果说明基于温度的气孔导度斜率参数化方案具有可行性,并有助于从机理层面改进常绿林生态系统的气孔导度和植被蒸腾动态的模拟。

The conductance-photosynthesis (gs-A) model is widely used for estimating the transpiration rate (ETc). The stomatal conductance slope (g1) in the gs-A model is crucial, and is usually parameterized with a PFT-specific g1. However, because there is seasonal variation in g1, the scheme of constantizing g1 results in large potential uncertainties in ETc estimation. Therefore, optimizing the parameterized scheme of g1 is key for improving the estimation of ETc. Previous studies have shown that the dynamic parameterization of g1 using remote sensing-based Leaf Area Index (LAI) can effectively improve the accuracy of the estimated ETc in deciduous forests. However, it is still not clear whether this method is applicable to evergreen forests, in which the canopy shows slight seasonal variability. In addition, the First-Principles Theory indicates that g1 can be expressed as a function of temperature. Hence, whether temperature can be used to simulate g1 with a better performance than that when using LAI requires further investigations. In view of the above questions, six FLUXNET evergreen forest sites were selected to investigate the relationships between g1, and LAI and air temperature, and the ETc simulation results under the two parameterization schemes were compared. Results showed that g1 varied with both LAI and temperature at each site, showing a significant negative correlation, while the results of the dynamic parameterization scheme (DYN) were better than those of the constant g1 scheme (FIX). This showed that the simulation of g1 using LAI is still effective in evergreen forests, but the explanation of temperature on g1 (R2=0.45±0.12) is stronger than that of LAI (R2=0.28±0.23). Further comparing the gs and ETc obtained using the two schemes, we found that the scheme based on temperature performed better than that of LAI at the daily scale, with the Root Mean Square Error (RMSE) of the ETc estimation being significantly reduced (26.0%±24.4%). This study emphasizes the feasibility of the temperature-based parameterized scheme of g1 and helps to fundamentally improve the simulation of gs and ETc in evergreen forest landscapes.

中图分类号: 

表1 选取的 6个常绿林站点的基本信息
Table 1 Basic information about six evergreen forest sites selected
表2 6个常绿林站点 g1 参数(因变量)分别与 LAI(自变量)以及温度(自变量)之间的线性回归系数
Table 2 Coefficients of the linear regression between g1dependent variableand temperatureindependent variableor LAIindependent variablefor the six evergreen forest sites selected
图1 基于通量数据的USO模型g1 、遥感LAI和气温的季节变化
(a)~(c) 常绿阔叶林;(d)~(f) 常绿针叶林
Fig. 1 Seasonal variations of USO model g1remote sensing LAI and air temperature based on flux data
(a)~(c) Evergreen broadleaf forest;(d)~(f) Evergreen needleleaf forest
图2 不同参数化方案在g1 参数估算中值表现
(a)~(c)分别表示参数化估算的g 1与观测值之间的均方根误差(RMSE)、相关系数( r)和赤池信息准则(AIC);星号表示DYN_T a方案中3个评价指标均最优
Fig. 2 The median performance of different parameterization schemes in g1 parameter estimation
(a)~(c) denote the Root-Mean-Square error, correlation coefficient, and the Akaike information criterion between the parameterized estimate of g 1 and the observations, respectively. An asterisk indicates that all three evaluation metrics are optimal in the DYN_T a scheme
图3 LAI、温度与g1 参数的拟合情况
Fig. 3 Fitting of LAIair temperature and g1 parameter
图4 基于不同g1 参数方案的gsETc 估算表现
(a)~(c)为模拟的g s与基于观测的g s对比;(d)~(f)为模拟的ET c与基于观测的ET c对比
Fig. 4 Performance of gs and ETc estimation based on different g1 parameter schemes
(a)~(c) Denote simulated g s vs. observation-based g s; (d)~(f) Denote simulated ET c vs. observation-based ET c
1 YU Guirui, FU Yuling, SUN Xiaomin, et al. Research progress and development ideas of China terrestrial ecosystem flux observation and research network (ChinaFLUX) [J]. Science in China Series D: Earth Sciences, 2006, 36 (): 1-21.
于贵瑞,伏玉玲,孙晓敏,等.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J]. 中国科学D辑:地球科学,2006,36(): 1-21.
2 JUNG M, REICHSTEIN M, CIAIS P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7 318): 951-954.
3 WANG K C, DICKINSON R E. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics, 2012, 50(2). DOI: 10.1029/2011RG000373 .
4 CHAPIN III F S, PICKETT S T A, POWER M E, et al. Earth stewardship: a strategy for social-ecological transformation to reverse planetary degradation[J]. Journal of Environmental Studies and Sciences, 2011, 1(1): 44-53.
5 MARSHALL M, THENKABAIL P, BIGGS T, et al. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation)[J]. Agricultural and Forest Meteorology, 2016, 218: 122-134.
6 KNOHL A, SCHULZE E D, KOLLE O, et al. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany[J]. Agricultural and Forest Meteorology, 2003, 118(3/4): 151-167.
7 OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5 790): 1 068-1 072.
8 TRENBERTH K E, SMITH L. The three dimensional structure of the atmospheric energy budget: methodology and evaluation[J]. Climate Dynamics, 2009, 32(7): 1 065-1 079.
9 VINUKOLLU R K, WOOD E F, FERGUSON C R, et al. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: evaluation of three process-based approaches[J]. Remote Sensing of Environment, 2011, 115(3): 801-823.
10 JASECHKO S, SHARP Z D, GIBSON J J, et al. Terrestrial water fluxes dominated by transpiration[J]. Nature, 2013, 496(7 445): 347-350.
11 PENMAN H L. Natural evaporation from open water,bare soil and grass[J]. Proceedings of the Royal Society of London, 1948, 193(1 032): 120-145.
12 LIU Yuanbo, QIU Guoyu, ZHANG Hongsheng, et al. Theoretical methods for terrestrial evapotranspiration: review and prospect[J]. Science China: Earth Sciences, 2021, 52(3): 381-399.
刘元波,邱国玉,张宏昇,等.陆域蒸散的测算理论方法:回顾与展望[J]. 中国科学: 地球科学,2021, 52(3): 381-399.
13 ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO irrigation and drainage paper 56[Z]. Rome: Food and Agricultural Organization of the U. N., 1998.
14 LU Xinjian. Research on calculation method of tree transpiration by Penman-Monteith equation[D]. Beijing: Beijing Forestry University,2008.
芦新建. Penman-Monteith方程计算林木蒸腾量的方法研究[D]. 北京: 北京林业大学, 2008.
15 JIAO Xing, LIU Guangquan, KUANG Shangfu, et al. Review on application of Penman-Monteith equation to studying forest vegetation evapotranspiration[J]. Journal of Hydraulic Engineering, 2010, 41(2): 245-252.
焦醒,刘广全,匡尚富,等.Penman-Monteith模型在森林植被蒸散研究中的应用[J].水利学报,2010,41(2):245-252.
16 LI Hongxia, ZHANG Yongqiang, ZHANG Xinhua, et al. Estimation of regional evapotranspiration by remote sensing Penman-Monteith model[J]. Engineering Journal of Wuhan University, 2011, 44(4): 457-461.
李红霞,张永强,张新华,等.遥感Penman-Monteith模型对区域蒸散发的估算[J].武汉大学学报(工学版), 2011, 44(4): 457-461.
17 WANG Haibo, MA Mingguo. Estimation of transpiration and evaporation of different ecosystems in an inland river basin using remote sensing data and the Penman-Monteith equation[J]. Acta Ecologica Sinica, 2014, 34(19): 5 617-5 626.
王海波,马明国.基于遥感和Penman-Monteith模型的内陆河流域不同生态系统蒸散发估算[J].生态学报,2014, 34(19): 5 617-5 626.
18 GAO Guanlong, ZHANG Xiaoyou, CHANG Zongqiang, et al. Environmental response simulation and the up-scaling of plant stomatal conductance[J]. Acta Ecologica Sinica, 2016, 36(6): 1 491-1 500.
高冠龙,张小由,常宗强,等.植物气孔导度的环境响应模拟及其尺度扩展[J].生态学报, 2016, 36(6):1 491-1 500.
19 COWAN I R, FARQUHAR G D. Stomatal function in relation to leaf metabolism and environment[J]. Symposia of the Society for Experimental Biology, 1977, 31: 471-505.
20 WU J, SERBIN S P, ELY K S, et al. The response of stomatal conductance to seasonal drought in tropical forests[J]. Global Change Biology, 2020, 26(2): 823-839.
21 MU Q Z, ZHAO M S, RUNNING S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1 781-1 800.
22 LEUNING R. Modelling stomatal behaviour and and photosynthesis of eucalyptus grandis[J]. Australian Journal of Plant Physiology, 1990, 17: 159-175.
23 MISSON L, RATHGEBER C, GUIOT J. Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model[J]. Canadian Journal of Forest Research, 2004, 34(4): 888-898.
24 HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6 951): 901-908.
25 YE Zipiao, YU Qiang. Mechanism model of stomatal conductance[J]. Chinese Journal of Plant Ecology, 2009, 33(4): 772-782.
叶子飘,于强.植物gs的机理模型[J]. 植物生态学报,2009, 33(4): 772-782.
26 MEDLYN B E, DUURSMA R A, EAMUS D, et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance[J]. Global Change Biology, 2011, 17(6): 2 134-2 144.
27 MINER G L, BAUERLE W L, BALDOCCHI D D. Estimating the sensitivity of stomatal conductance to photosynthesis: a review[J]. Plant, Cell & Environment, 2017, 40(7): 1 214-1 238.
28 MEDLYN B E, de KAUWE M G, LIN Y S, et al. How do leaf and ecosystem measures of water-use efficiency compare?[J]. New Phytologist, 2017, 216(3): 758-770.
29 KNAUER J, WERNER C, ZAEHLE S. Evaluating stomatal models and their atmospheric drought response in a land surface scheme: a multibiome analysis[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(10): 1 894-1 911.
30 JIN Jiaxin, YAN Tao, WANG Han, et al. Improved modeling of canopy transpiration for temperate forests by incorporating a LAI-based dynamic parametrization scheme of stomatal slope[J]. Agricultural and Forest Meteorology, 2022, 326(15). DOI: 10.1016/j.agrformet.2022.109157 .
31 LIN Y S, MEDLYN B E, DUURSMA R A, et al. Optimal stomatal behaviour around the world[J]. Nature Climate Change, 2015, 5(5): 459-464.
32 PRENTICE I C, DONG N, GLEASON S M, et al. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology[J]. Ecology Letters, 2014, 17(1): 82-91.
33 ZOU Mijun, YANG Kun, LU Hui, et al. Integrating eco-evolutionary optimality principle and land processes for evapotranspiration estimation[J]. Journal of Hydrology, 2023. DOI: 10.1016/j.jhydrol.2022.128855 .
34 WANG H, PRENTICE I C, KEENAN T F, et al. Towards a universal model for carbon dioxide uptake by plants[J]. Nature Plants, 2017, 3(9): 734-741.
35 TAN Shen, WANG Han. Towards a universal model for estimating gross primary productivity and evapotranspiration coupling based on First-Principles theory[J]. Acta Ecologica Sinica, 2022, 42(4): 1 487-1 499.
谭深,王焓. 基于最优性原理的普适性碳水通量耦合估算方法研究[J]. 生态学报,2022,42(4): 1 487-1 499.
36 LEUNING R, CLEUGH H A, ZEGELIN S J, et al. Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates[J]. Agricultural and Forest Meteorology, 2005, 129(3/4): 151-173.
37 GRIEBEL A, BENNETT L T, METZEN D, et al. Effects of inhomogeneities within the flux footprint on the interpretation of seasonal, annual, and interannual ecosystem carbon exchange[J]. Agricultural and Forest Meteorology, 2016, 221: 50-60.
38 RAMBAL S, JOFFRE R, OURCIVAL J M, et al. The growth respiration component in eddy CO2 flux from a Quercus ilex mediterranean forest[J]. Global Change Biology, 2004, 10(9): 1 460-1 469.
39 GRÜNWALD T, BERNHOFER C. A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt[J]. Tellus B: Chemical and Physical Meteorology, 2007, 59(3): 387-396.
40 MOORS E J. Water use of forests in the Netherlands[D]. Wageningen: Vrije Universiteit Amsterdam, 2012.
41 IRVINE J, LAW B E, MARTIN J G, et al. Interannual variation in soil CO2 efflux and the response of root respiration to climate and canopy gas exchange in mature ponderosa pine[J]. Global Change Biology, 2008, 14(12): 2 848-2 859.
42 PAPALE D, REICHSTEIN M, AUBINET M, et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation[J]. Biogeosciences, 2006, 3(4): 571-583.
43 ZHANG Kun, ZHU Gaofeng, MA Jinzhu, et al. Parameter analysis and estimates for the MODIS evapotranspiration algorithm and multiscale verification[J]. Water Resources Research, 2019, 55(3): 2 211-2 231.
44 MONTEITH J L. Evaporation and environment[J]. Symposia of the Society for Experimental Biology, 1965, 19: 205-234.
45 WANG L X, GOOD S P, CAYLOR K K. Global synthesis of vegetation control on evapotranspiration partitioning[J]. Geophysical Research Letters, 2014, 41(19): 6 753-6 757.
46 LAWRENCE D M, THORNTON P E, OLESON K W, et al. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land-atmosphere interaction[J]. Journal of Hydrometeorology, 2007, 8(4): 862-880.
47 ZHOU Sha, YU Bofu, ZHANG Yao, et al. Partitioning evapotranspiration based on the concept of underlying water use efficiency[J]. Water Resources Research, 2016, 52(2): 1 160-1 175.
48 ZHOU Sha, YU Bofu, HUANG Yuefei, et al. Daily underlying water use efficiency for AmeriFlux sites[J]. Journal of Geophysical Research-Biogeosciences, 2015, 120(5): 887-902.
49 WEI Z W, YOSHIMURA K, WANG L X, et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration[J]. Geophysical Research Letters, 2017, 44(6): 2 792-2 801.
50 STOY P C, EL-MADANY T S, FISHER J B, et al. Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities[J]. Biogeosciences, 2019, 16(19): 3 747-3 775.
51 ZHANG K, KIMBALL J S, NEMANI R R, et al. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006[J]. Water Resources Research, 2010, 46(9). DOI: 10.1029/2009WR008800 .
52 MOFFAT A M, PAPALE D, REICHSTEIN M, et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes[J]. Agricultural and Forest Meteorology, 2007, 147(3/4). DOI: 10.1016/j.agrformet.2007.08.011 .
53 FRANKS P J, BONAN G B, BERRY J A, et al. Comparing optimal and empirical stomatal conductance models for application in Earth system models[J]. Global Change Biology, 2018, 24(12): 5 708-5 723.
54 FRANKS P J, BERRY J A, LOMBARDOZZI D L, et al. Stomatal function across temporal and spatial scales: deep-time trends, land-atmosphere coupling and global models[J]. Plant Physiology, 2017, 174(2): 583-602.
55 DEVI A F, GARKOTI S C. Variation in evergreen and deciduous species leaf phenology in Assam, India[J]. Trees, 2013, 27(4): 985-997.
56 FARQUHAR G D, CAEMMERER S V, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90.
57 MCMURTRIE R E, WANG Y P. Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures[J]. Plant, Cell & Environment, 1993, 16(1): 1-13.
58 HARLEY P C, BALDOCCHI D D. Scaling carbon dioxide and water vapour exchange from leaf to capony in a deciduous forest[J]. Plant, Cell & Environment, 1995, 18: 1 146-1 156.
[1] 程昕, 王小雨, 曹怀仁, 张成君. GDGTs温度指标在青藏高原湖泊的应用潜力分析——以昆仑山黑海为例[J]. 地球科学进展, 2023, 38(9): 967-977.
[2] 贾明瑞, 张晋韬, 王芳. 《巴黎协定》未来气候情景下“一带一路”沿线区域气候舒适度预估[J]. 地球科学进展, 2022, 37(5): 505-518.
[3] 胡棉舒, 李阔, 曹海月, 王兆国, 刘钦甫. 湘中寒婆坳矿区测水组无烟煤—煤系石墨变质温度研究[J]. 地球科学进展, 2021, 36(10): 1015-1025.
[4] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[5] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[6] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[7] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[8] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[9] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[10] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[11] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[12] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[13] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[14] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[15] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
阅读次数
全文


摘要