1 |
YU Guirui, FU Yuling, SUN Xiaomin, et al. Research progress and development ideas of China terrestrial ecosystem flux observation and research network (ChinaFLUX) [J]. Science in China Series D: Earth Sciences, 2006, 36 (): 1-21.
|
|
于贵瑞,伏玉玲,孙晓敏,等.中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路[J]. 中国科学D辑:地球科学,2006,36(): 1-21.
|
2 |
JUNG M, REICHSTEIN M, CIAIS P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7 318): 951-954.
|
3 |
WANG K C, DICKINSON R E. A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics, 2012, 50(2). DOI: 10.1029/2011RG000373 .
|
4 |
CHAPIN III F S, PICKETT S T A, POWER M E, et al. Earth stewardship: a strategy for social-ecological transformation to reverse planetary degradation[J]. Journal of Environmental Studies and Sciences, 2011, 1(1): 44-53.
|
5 |
MARSHALL M, THENKABAIL P, BIGGS T, et al. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation)[J]. Agricultural and Forest Meteorology, 2016, 218: 122-134.
|
6 |
KNOHL A, SCHULZE E D, KOLLE O, et al. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany[J]. Agricultural and Forest Meteorology, 2003, 118(3/4): 151-167.
|
7 |
OKI T, KANAE S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5 790): 1 068-1 072.
|
8 |
TRENBERTH K E, SMITH L. The three dimensional structure of the atmospheric energy budget: methodology and evaluation[J]. Climate Dynamics, 2009, 32(7): 1 065-1 079.
|
9 |
VINUKOLLU R K, WOOD E F, FERGUSON C R, et al. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: evaluation of three process-based approaches[J]. Remote Sensing of Environment, 2011, 115(3): 801-823.
|
10 |
JASECHKO S, SHARP Z D, GIBSON J J, et al. Terrestrial water fluxes dominated by transpiration[J]. Nature, 2013, 496(7 445): 347-350.
|
11 |
PENMAN H L. Natural evaporation from open water,bare soil and grass[J]. Proceedings of the Royal Society of London, 1948, 193(1 032): 120-145.
|
12 |
LIU Yuanbo, QIU Guoyu, ZHANG Hongsheng, et al. Theoretical methods for terrestrial evapotranspiration: review and prospect[J]. Science China: Earth Sciences, 2021, 52(3): 381-399.
|
|
刘元波,邱国玉,张宏昇,等.陆域蒸散的测算理论方法:回顾与展望[J]. 中国科学: 地球科学,2021, 52(3): 381-399.
|
13 |
ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO irrigation and drainage paper 56[Z]. Rome: Food and Agricultural Organization of the U. N., 1998.
|
14 |
LU Xinjian. Research on calculation method of tree transpiration by Penman-Monteith equation[D]. Beijing: Beijing Forestry University,2008.
|
|
芦新建. Penman-Monteith方程计算林木蒸腾量的方法研究[D]. 北京: 北京林业大学, 2008.
|
15 |
JIAO Xing, LIU Guangquan, KUANG Shangfu, et al. Review on application of Penman-Monteith equation to studying forest vegetation evapotranspiration[J]. Journal of Hydraulic Engineering, 2010, 41(2): 245-252.
|
|
焦醒,刘广全,匡尚富,等.Penman-Monteith模型在森林植被蒸散研究中的应用[J].水利学报,2010,41(2):245-252.
|
16 |
LI Hongxia, ZHANG Yongqiang, ZHANG Xinhua, et al. Estimation of regional evapotranspiration by remote sensing Penman-Monteith model[J]. Engineering Journal of Wuhan University, 2011, 44(4): 457-461.
|
|
李红霞,张永强,张新华,等.遥感Penman-Monteith模型对区域蒸散发的估算[J].武汉大学学报(工学版), 2011, 44(4): 457-461.
|
17 |
WANG Haibo, MA Mingguo. Estimation of transpiration and evaporation of different ecosystems in an inland river basin using remote sensing data and the Penman-Monteith equation[J]. Acta Ecologica Sinica, 2014, 34(19): 5 617-5 626.
|
|
王海波,马明国.基于遥感和Penman-Monteith模型的内陆河流域不同生态系统蒸散发估算[J].生态学报,2014, 34(19): 5 617-5 626.
|
18 |
GAO Guanlong, ZHANG Xiaoyou, CHANG Zongqiang, et al. Environmental response simulation and the up-scaling of plant stomatal conductance[J]. Acta Ecologica Sinica, 2016, 36(6): 1 491-1 500.
|
|
高冠龙,张小由,常宗强,等.植物气孔导度的环境响应模拟及其尺度扩展[J].生态学报, 2016, 36(6):1 491-1 500.
|
19 |
COWAN I R, FARQUHAR G D. Stomatal function in relation to leaf metabolism and environment[J]. Symposia of the Society for Experimental Biology, 1977, 31: 471-505.
|
20 |
WU J, SERBIN S P, ELY K S, et al. The response of stomatal conductance to seasonal drought in tropical forests[J]. Global Change Biology, 2020, 26(2): 823-839.
|
21 |
MU Q Z, ZHAO M S, RUNNING S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1 781-1 800.
|
22 |
LEUNING R. Modelling stomatal behaviour and and photosynthesis of eucalyptus grandis[J]. Australian Journal of Plant Physiology, 1990, 17: 159-175.
|
23 |
MISSON L, RATHGEBER C, GUIOT J. Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model[J]. Canadian Journal of Forest Research, 2004, 34(4): 888-898.
|
24 |
HETHERINGTON A M, WOODWARD F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6 951): 901-908.
|
25 |
YE Zipiao, YU Qiang. Mechanism model of stomatal conductance[J]. Chinese Journal of Plant Ecology, 2009, 33(4): 772-782.
|
|
叶子飘,于强.植物gs的机理模型[J]. 植物生态学报,2009, 33(4): 772-782.
|
26 |
MEDLYN B E, DUURSMA R A, EAMUS D, et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance[J]. Global Change Biology, 2011, 17(6): 2 134-2 144.
|
27 |
MINER G L, BAUERLE W L, BALDOCCHI D D. Estimating the sensitivity of stomatal conductance to photosynthesis: a review[J]. Plant, Cell & Environment, 2017, 40(7): 1 214-1 238.
|
28 |
MEDLYN B E, de KAUWE M G, LIN Y S, et al. How do leaf and ecosystem measures of water-use efficiency compare?[J]. New Phytologist, 2017, 216(3): 758-770.
|
29 |
KNAUER J, WERNER C, ZAEHLE S. Evaluating stomatal models and their atmospheric drought response in a land surface scheme: a multibiome analysis[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(10): 1 894-1 911.
|
30 |
JIN Jiaxin, YAN Tao, WANG Han, et al. Improved modeling of canopy transpiration for temperate forests by incorporating a LAI-based dynamic parametrization scheme of stomatal slope[J]. Agricultural and Forest Meteorology, 2022, 326(15). DOI: 10.1016/j.agrformet.2022.109157 .
|
31 |
LIN Y S, MEDLYN B E, DUURSMA R A, et al. Optimal stomatal behaviour around the world[J]. Nature Climate Change, 2015, 5(5): 459-464.
|
32 |
PRENTICE I C, DONG N, GLEASON S M, et al. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology[J]. Ecology Letters, 2014, 17(1): 82-91.
|
33 |
ZOU Mijun, YANG Kun, LU Hui, et al. Integrating eco-evolutionary optimality principle and land processes for evapotranspiration estimation[J]. Journal of Hydrology, 2023. DOI: 10.1016/j.jhydrol.2022.128855 .
|
34 |
WANG H, PRENTICE I C, KEENAN T F, et al. Towards a universal model for carbon dioxide uptake by plants[J]. Nature Plants, 2017, 3(9): 734-741.
|
35 |
TAN Shen, WANG Han. Towards a universal model for estimating gross primary productivity and evapotranspiration coupling based on First-Principles theory[J]. Acta Ecologica Sinica, 2022, 42(4): 1 487-1 499.
|
|
谭深,王焓. 基于最优性原理的普适性碳水通量耦合估算方法研究[J]. 生态学报,2022,42(4): 1 487-1 499.
|
36 |
LEUNING R, CLEUGH H A, ZEGELIN S J, et al. Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates[J]. Agricultural and Forest Meteorology, 2005, 129(3/4): 151-173.
|
37 |
GRIEBEL A, BENNETT L T, METZEN D, et al. Effects of inhomogeneities within the flux footprint on the interpretation of seasonal, annual, and interannual ecosystem carbon exchange[J]. Agricultural and Forest Meteorology, 2016, 221: 50-60.
|
38 |
RAMBAL S, JOFFRE R, OURCIVAL J M, et al. The growth respiration component in eddy CO2 flux from a Quercus ilex mediterranean forest[J]. Global Change Biology, 2004, 10(9): 1 460-1 469.
|
39 |
GRÜNWALD T, BERNHOFER C. A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt[J]. Tellus B: Chemical and Physical Meteorology, 2007, 59(3): 387-396.
|
40 |
MOORS E J. Water use of forests in the Netherlands[D]. Wageningen: Vrije Universiteit Amsterdam, 2012.
|
41 |
IRVINE J, LAW B E, MARTIN J G, et al. Interannual variation in soil CO2 efflux and the response of root respiration to climate and canopy gas exchange in mature ponderosa pine[J]. Global Change Biology, 2008, 14(12): 2 848-2 859.
|
42 |
PAPALE D, REICHSTEIN M, AUBINET M, et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation[J]. Biogeosciences, 2006, 3(4): 571-583.
|
43 |
ZHANG Kun, ZHU Gaofeng, MA Jinzhu, et al. Parameter analysis and estimates for the MODIS evapotranspiration algorithm and multiscale verification[J]. Water Resources Research, 2019, 55(3): 2 211-2 231.
|
44 |
MONTEITH J L. Evaporation and environment[J]. Symposia of the Society for Experimental Biology, 1965, 19: 205-234.
|
45 |
WANG L X, GOOD S P, CAYLOR K K. Global synthesis of vegetation control on evapotranspiration partitioning[J]. Geophysical Research Letters, 2014, 41(19): 6 753-6 757.
|
46 |
LAWRENCE D M, THORNTON P E, OLESON K W, et al. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land-atmosphere interaction[J]. Journal of Hydrometeorology, 2007, 8(4): 862-880.
|
47 |
ZHOU Sha, YU Bofu, ZHANG Yao, et al. Partitioning evapotranspiration based on the concept of underlying water use efficiency[J]. Water Resources Research, 2016, 52(2): 1 160-1 175.
|
48 |
ZHOU Sha, YU Bofu, HUANG Yuefei, et al. Daily underlying water use efficiency for AmeriFlux sites[J]. Journal of Geophysical Research-Biogeosciences, 2015, 120(5): 887-902.
|
49 |
WEI Z W, YOSHIMURA K, WANG L X, et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration[J]. Geophysical Research Letters, 2017, 44(6): 2 792-2 801.
|
50 |
STOY P C, EL-MADANY T S, FISHER J B, et al. Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities[J]. Biogeosciences, 2019, 16(19): 3 747-3 775.
|
51 |
ZHANG K, KIMBALL J S, NEMANI R R, et al. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006[J]. Water Resources Research, 2010, 46(9). DOI: 10.1029/2009WR008800 .
|
52 |
MOFFAT A M, PAPALE D, REICHSTEIN M, et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes[J]. Agricultural and Forest Meteorology, 2007, 147(3/4). DOI: 10.1016/j.agrformet.2007.08.011 .
|
53 |
FRANKS P J, BONAN G B, BERRY J A, et al. Comparing optimal and empirical stomatal conductance models for application in Earth system models[J]. Global Change Biology, 2018, 24(12): 5 708-5 723.
|
54 |
FRANKS P J, BERRY J A, LOMBARDOZZI D L, et al. Stomatal function across temporal and spatial scales: deep-time trends, land-atmosphere coupling and global models[J]. Plant Physiology, 2017, 174(2): 583-602.
|
55 |
DEVI A F, GARKOTI S C. Variation in evergreen and deciduous species leaf phenology in Assam, India[J]. Trees, 2013, 27(4): 985-997.
|
56 |
FARQUHAR G D, CAEMMERER S V, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90.
|
57 |
MCMURTRIE R E, WANG Y P. Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures[J]. Plant, Cell & Environment, 1993, 16(1): 1-13.
|
58 |
HARLEY P C, BALDOCCHI D D. Scaling carbon dioxide and water vapour exchange from leaf to capony in a deciduous forest[J]. Plant, Cell & Environment, 1995, 18: 1 146-1 156.
|