Please wait a minute...
img img
高级检索
地球科学进展  2006, Vol. 21 Issue (1): 14-23    DOI: 10.11867/j.issn.1001-8166.2006.01.0014
研究论文     
基于特征基元的空间数据计算模式及其地学应用
明冬萍1, 骆剑承1,周成虎1,沈占锋1, 梁清翰2, 盛 昊1
1.中国科学院地理科学与资源研究所,北京 100101;2.武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079
Spatial Data Computing Pattern and Its Geo-Application
Ming Dongping1, Luo Jiancheng1, Zhou Chenghu1,Shen Zhanfeng1, Liang Qinghan2, Sheng Hao1
1. Institute of Geographical Sciences and Natural Resources Research , CAS , Beijing 100101, China;2. The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,Wuhan University, Wuhan 430079,China
 全文: PDF(329 KB)  
摘要:

将地学计算的定义外延为空间数据计算,对空间数据计算的基本单元问题进行了初步的探讨,提出了基于特征基元的空间数据计算一般模式,并根据计算行为模式及计算侧重点的不同,将空间数据计算过程分为深度计算与主动计算,总结了“数据→特征→知识”的一般计算过程,并就此进行阐释。根据地理实体的形态和功能过程的不同来刻画形态和功能过程差异的空间数据,将地学空间数据划分为反映固态基质信息的陆地空间数据、反映液态基质信息的陆地水文空间数据、反映液态基质信息的海洋流体空间数据和反映气态基质信息的大气流体空间数据四类。基于陆地、水文、海洋和大气相关空间现象和空间过程分析,结合提出的深度计算与主动计算理论,对这四类空间数据的深度计算与主动计算过程进行了初步探讨。以基于特征的遥感信息提取和目标识别工作为例,对上述理论进行了说明和验证。最后对空间数据计算模式相关问题进行总结和展望。

关键词: 计算模式陆地水文海洋大气遥感陆地空间数据    
Abstract:

    With the development in satellite sensor technology, data acquisition technology developed rapidly; and with the start of a series of space-based observation network for Earth science, such as EOS, GTOS, ECOS, GOOS and etc., high performance processing and analysis of tremendous data become the bottleneck we face. According to the functional differences between different data carrier of terrene, ocean and atmosphere, this paper divides spatial data into four classes:terrestrial-solid based spatial data, terrestrial-liquid based spatial data, marine-floating based spatial data and atmospheric-floating based spatial data. Then this paper introduces the concept of the basic unit in which the features or characters are homogenous and then proposes their actually existing style in the four types of spatial data mentioned above. 
    Furthermore, this paper simply reviews geocomputation and expands it to geo-spatial computation. Then this paper discusses the connotation and classification of geo-spatial computation and summarizes the general computing procedure: data→ features→ knowledge. According to the differences of the computational behavior and the computing emphasis, this paper divides geo-spatial computation into two classes: deep-computation and active-computation. Deep-computation (from data to features) is to extract the basic units through certain methods, such as clustering, so deep-computation emphasizes particularly on computing amount. Active-computation (from features to knowledge) is based on the basic units obtained by deep-computation. Firstly the spatial relationships between the units are computed, and the decisions can be made effectively and efficiently with domain knowledge and domain models through web services, so deep-computation emphasizes particularly on intelligence of computation.
    Consequently, this paper analyzes the computing pattern of the four types of spatial data mentioned above. What's more, a case study of information extraction and target recognition from remote sensing image based on features was done to illustrate and testify the ideas mentioned above. In the end, this paper summarizes the relative problems about spatial data computation and expects the direction of future researches.

Key words: Spatial data    Computing pattern    Terrene    Hydrology    Ocean    Atmosphere    Remote sensing.
收稿日期: 2005-06-20 出版日期: 2006-01-15
:  TP79  
基金资助:

国家自然科学基金项目“面向对象的城市用地智能化遥感分类方法研究”(编号:40301030);中国科学院地理科学与资源研究所知识创新工程前沿领域项目“遥感影像目标识别与特征挖掘的智能化方法研究与软件原型开发”(编号:CXIOG-D02-01)资助.

通讯作者: 明冬萍     E-mail: mingdp@lreis.ac.cn
作者简介: 明冬萍(1976-),女,黑龙江齐齐哈尔人,博士研究生,主要从事遥感影像智能处理与信息提取以及栅格计算方面的研究.E-mail:mingdp@lreis.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
明冬萍
盛昊
梁清翰
骆剑承
沈占锋
周成虎

引用本文:

明冬萍,骆剑承,周成虎,沈占锋,梁清翰,盛昊. 基于特征基元的空间数据计算模式及其地学应用[J]. 地球科学进展, 2006, 21(1): 14-23.

Ming Dongping,Luo Jiancheng,Zhou Chenghu,Shen Zhanfeng,Liang Qinghan,Sheng Hao. Spatial Data Computing Pattern and Its Geo-Application. Advances in Earth Science, 2006, 21(1): 14-23.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2006.01.0014        http://www.adearth.ac.cn/CN/Y2006/V21/I1/14

[1] Ying Longgen, Ning Yuemin. Spatial data: Its nature, effects and analysis[J]. Advances in Earth Science, 2005,20(1):49-56. [应龙根,宁越敏.空间数据:性质、影响和分析方法[J].地球科学进展,2005,20(1):49-56.]

[2] Zuo Dakang, ed. Dictionary of Contemporary Geography[M]. Beijing: The Commercial Press, 1990. [左大康主编.现代地理学辞典[M]. 北京: 商务印书馆,1990.]

[3] Camara G, Monteiro A. Geocomputation techniques for spatial analysis: Are they relevant to health data? [J]. Cad Saude Publica, 2001, 17(5):1 059-1 071.

[4] Egenhofer M, Glasgow J, Gnther O,et al. Progress in computational methods for representing geographical concepts [J]. International Journal of Geographical Information Science, 1999, 13(8): 775-796.

[5] Openshaw S, Abrahart R. Geocomputation[A]. In: Abrahart R, ed. Proceedings of the lst International Conference on GeoComputation[C]. Leeds: University of Leeds, 1996:665-666.

[6] Longley P. Geocomputation: A Primer [M]. NewYork: John Wiley and Sons, 1998.

[7] Wang Yongwu, Wang Yonggang. Guide to Object—Oriented Practice [M]. Beijing: Electronic Industry Press, 2004. [王咏武,王咏刚. 道法自然——面向对象实践指南[M]. 北京:电子工业出版社,2004.]

[8] Zheng Du,Chen Shupeng. Progress and disciplinary frontiers of geographical research [J]. Advances in Earth Science,2001,16(5): 599-606. [郑度,陈述彭. 地理学研究进展与前沿领域[J]. 地球科学进展, 2001, 16(5): 599-606.]

[9] Lu Dadao, Cai Yunlong. Geography in China: As sciences of changing direction [J]. Advances in Earth Science, 2001, 16(4): 497-472. [陆大道,蔡运龙. 我国地理学发展的回顾与展望——地理学:方向正在变化的科学[J]. 地球科学进展, 2001,16(4): 467-472.]

[10] Tang A, Adams T, Usery E. A spatial data model design for feature-based geographical information systems [J]. International Journal of Geographical Information Systems, 1996, 10(5): 643-659.

[11] Li Tianjun. Research on Distributed Geo-spatial Object Model[D]. Beijing: Beijing University, 1997. [李天峻. 分布式地理空间对象模型研究[D].北京: 北京大学, 1997.]

[12] Wladawsky-Berger I. Turning points in information technology [J]. IBM System Journal,1999, 38(2&3): 449-452.

[13] Computationally efficient Methods for deep computing (DeepC) [EB/OL]. http://cosco.hiit.fi/Projects/DeepC/. 2005-05-10.

[14] Want R, Pering T, Tennenhouse D. Comparing autonomic and proactive computing [J]. IBM Systems Journal,2003, 42(1) : 129-135.

[15] Smith B, Mark D. Ontology and Geographic Kinds [A]. In: Peucker T, Chrisman N, eds. International Symposium on Spatial Data Handling[C]. Vancouver, Canada, 1998.308-320.

[16] Luo Yingwei, Wang Xiaolin, Xu Zhuoqun. The model of distributed GIS2 oriented multi-agent system [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2002,38(3):375-383. [罗英伟,汪小林,许卓群.面向分布式GIS的多Agent系统模型[J]. 北京大学学报:自然科学版, 2002,38(3):375-383.]

[17] Xue Ling, Yang Kaizhong, Shen Tiyan. Agent-based modeling: The new advance in geocomputation [J]. Advances in Earth Science, 2004,19(2):305-311. [薛领,杨开忠,沈体雁.基于agent 的建模——地理计算的新发展[J].地球科学进展,2004,19(2):305-311.]

[18] Tang C, Xu L, Feng S. An agent-based geographical information system [J]. Knowledge-Based Systems, 2001,14(5~6): 233-242.

[19] Guo Shenglian, Xiong Lihua, Yang Jing, et al. A DEM and physically based distributed hydrological model [J]. Journal of Wuhan University of Hydraulic and Electric Engineering,2000,33(6):1-5. [郭生练,熊立华,杨井,.基于DEM的分布式流域水文物理模型[J]. 武汉水利电力大学学报, 2000,33(6):1-5.]

[20] Xiong Lihua, Guo Shenglian. Distributed Watershed Hydrological Model[M]. Beijing: China Water Power Press, 2004.[熊立华,郭生练.分布式流域水文模型[M]. 北京: 中国水利水电出版社, 2004.]

[21] Li Li, Wang Haiqing. Geo-spatial data mining and knowledge discovering-study and development on geographical unit dataset [J]. Science of Surveying and Mapping, 2005, 30(3): 24-27. [李莉,王海清. 地理空间数据挖掘与知识发现——地理单元数据集的研究与开发[J]. 测绘科学, 2005, 30(3): 24-27.]

[22] Wang Hong, Wang Jun. Preliminary study of national basic geographical unit dataset [J]. Science of Surveying and Mapping, 2004, 29(3):22-25. [王红,王均. 国家基本地理单元数据集的初步研究[J]. 测绘科学,2004, 29(3):22-25.]

[23] Ren Hongyu, Yang Qinke, Han Lin, et al. Construction and application of national spatial hydrology database on a hydrological polygons basis [J]. Bulletin of Soil and Water Conservation, 2003, 23(3): 55-67. [任红玉,杨勤科,韩琳,. 全国水文计算单元空间数据库的建立与应用[J]. 水土保持通报, 2003, 23(3): 55-67.]

[24] Liu Changming. Advance in Geo-hydrology and Its Prospect in 21th Century [EB/OL]. http://www.waterinfo.net.cn, 2005-05-10. [刘昌明.地理水文学的研究进展与21世纪展望 [EB/OL]. http://www.waterinfo.net.cn,2005-05-10.]

[25] Becker A, Klöking B, Lahmer W, et al. The hydrological modeling system ARC/EGMO [A]. In: Singh Vijay P, Frevert D, eds. Mathematical Models of Large Watershed Hydrology[C]. Colorado:Water Resource Publications, LLC, 2002:321-384.

[26] Ao Ruzhuang, Wang Xiekang, Huang Er. BP based Simulation of overland flow [J]. Sediment Research, 2000,(4): 55-59. [敖汝庄,王协康,黄尔. 坡面产流模式的神经网络模拟[J]. 泥沙研究,2000,(4): 55-59.]

[27] Fish management zones [EB/OL].http://www.albertaoutdoorsmen.ca/fishingregs/zones_units.html,2005-05-10.

[28] Zhang Tianyu. Research on Marine GIS Field Model[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, CAS, 2002. [仉天宇.海洋GIS 场模型研究[D]. 北京: 中国科学院地理科学与资源研究所, 2002.]

[29] Feng Shizuo, Li Fengqi, Li Shaoqing. An Introduction to Marine Science [M]. Beijing: Higher Education Press,1996. [冯士笮,李凤歧,李少菁.海洋科学导论[M]. 北京: 高等教育出版社, 1996.]

[30] Wang Guihua, Li Rongfeng. Advance in the study of deducing ocean circulation from hydrographic data [J]. Advances in Earth Science, 2004,19(1):100-106. [王桂华,李荣凤.利用水文资料推测海洋流场的研究进展[J].地球科学进展,2004,19(1):100-106.]

[31] Nancy M.Ocean Currents[EB/OL]. http://www.marine.usm.edu/mar151/MAR_151_Chap_6c.html,2005-05-10.

[32] Su Fenzhen. Spatio-Temporal Analysis for Marine Fishery Resources[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, CAS, 2001. [苏奋振.海洋渔业资源时空动态研究[D]. 北京: 中国科学院地理科学与资源研究所, 2001.]

[33] Wang Xinwen, Lin Jianping. Conspectus of Geo-science [M]. Beijing: Geology Press, 1999. [汪新文, 林建平. 地球科学概论[M]. 北京:地质出版社,1999.]

[34] Sheng Peixuan, Mao Jietai, Li Jianguo, et al. Atmospheric Physics [M]. Beijing: Beijing University Press, 2003. [盛裴轩,毛节泰,李建国,. 大气物理学[M]. 北京:北京大学出版社,2003.]

[35] Science museum of China [EB/OL]. http://www.kepu.com.cn/gb/earth/weather/vary/index.html, 2005-05-10.

[36] Zhang Yongqiang, Zhou Wenxian. A scheme on the objective air mass grouping procedure [J]. Scientia Meteorology Sinica, 1997,17(4):384-392. [张永强,周文贤.气团客观分类实施方案研究[J]. 气象科学,1997,17(4):384-392.]

[37] Huang Ronghui. Review and prospects of the developments of atmospheric sciences [J]. Advances in Earth Science, 2001,16(5).643-657. [黄荣辉.大气科学发展的回顾与展望[J]. 地球科学进展, 2001,16(5):643-657.]

[38] Li Chongyin. Numeric simulation of atmospheric science [J]. Advances in Earth Science, 1991,6(5):58-60. [李崇银.大气科学数值模拟[J]. 地球科学进展, 1991,6(5): 58-60.]

[39] Ming Dongping, Luo Jiancheng, Zhou Chenghu, et al. Research on information extraction from high resolution remote sensing image and parcel unit extraction based-on features [J]. Journal of Data Acquisition & Processing, 2005, 20(1): 34-39. [明冬萍,骆剑承,周成虎,. 高分辨率遥感影像信息提取及块状基元特征提取研究[J]. 数据采集与处理, 2005, 20(1): 34-39.]

[40] Shen Zhanfeng, Luo Jiancheng, Ma Weifeng, et al. Web services in remotely sensed image distributed processing [J]. Computer Engineering and Applications, 2004, 40(8): 185-222. [沈占锋,骆剑承,马伟锋,.Web Services实现遥感图像分布式处理[J].计算机工程与应用,2004, 40(8): 185-222.]

[41] Shen Zhanfeng, Luo Jiancheng, Ma Weifeng, et al. Distributed computing environment for remotely sensed image processing [J]. Computer Engineering and Design, 2005, 26(1): 1-3. [沈占锋,骆剑承,马伟锋,.适合高分辨率遥感影像处理的分布式环境研究[J]. 计算机工程与设计, 2005, 26(1): 1-3.]

[42] Zheng Jiang. Study on Parallel Methods for Information Extraction and Analysis of Remotely Sensed Images[D]. Beijing: Institute of Geographic Sciences and Natural Resources Research, CAS, 2004. [郑江.并行遥感图像信息提取与分析方法研究[D]. 北京: 中国科学院地理科学与资源研究所, 2004.]

[1] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[2] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[3] 马乐天, 冯旭文, 李家彪. 海洋技术国际标准化在中国的起步及其实践意义[J]. 地球科学进展, 2017, 32(6): 660-667.
[4] 吴绍洪, 高江波, 戴尔阜, 赵东升, 尹云鹤, 杨琳, 郑景云, 潘韬, 杨勤业. 中国陆地表层自然地域系统动态研究:思路与方案[J]. 地球科学进展, 2017, 32(6): 569-576.
[5] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[6] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[7] 李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.
[8] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[9] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[10] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[11] 黎伟标, 刘昊亚, 方容. 大气对海洋中尺度涡响应的研究进展[J]. 地球科学进展, 2017, 32(10): 1039-1049.
[12] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[13] 徐凯, 姚志刚, 韩志刚, 赵增亮, 方涵先. 临近空间重力波强扰动的卫星观测研究进展[J]. 地球科学进展, 2017, 32(1): 66-74.
[14] 张春灌, 袁炳强, 张国利. 最新全球重力数据库V23中陆域重力资料质量评估[J]. 地球科学进展, 2017, 32(1): 75-82.
[15] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.