Please wait a minute...
img img
地球科学进展  2005, Vol. 20 Issue (5): 533-540    DOI: 10.11867/j.issn.1001-8166.2005.05.0533
刘 洁1;刘启元1;宋惠珍1;童晓光2
1.中国地震局地质研究所,北京 100029; 2.中石油国际合作司,北京 100724
LIU Jie1;LIU Qiyuan1;SONG Huizhen1;TONG Xiaoguang2
1. Institute of Geology, China Earthquake Administration, Beijing 100029,China;
2. International Cooperation Department, PetroChina, Beijing 100724,China
 全文: PDF(215 KB)  


关键词: 动力学数值模拟非线性耦合造山    

In the last decade, great advances have been made on the numerical simulation of the orogenic dynamics. Not only an integrated theory has been built up, but also many convincing results were obtained from the concrete example analysis. The quantitative study of the orogenic dynamics has been a hot research point of the continental deformation. In the quantitative study of the orogenic dynamics a series of control equations need to be solved by means of the numerical technique. The results will provide the image of the orogenic dynamic evolution. This makes it possible to understand the role of different factors in the orogenic process and to identify the acceptability of an orogenic model from the mechanical analysis. The investigation of the orogenic evolution requires an equation system integrated from the solid-mechanics and fluid-mechanics as well as the thermodynamics. The intensive largedisplacement and large-strain taking place in the orogenic evolution make the numerical simulation more complicated. The re-meshing technique becomes necessary in this case. The criterion of rock failure and inner boundary condition need to be considered carefully while processing the fault growth, movement and deformation. In addition, the surface erosion and sediment as well as the isostatic compensation must be considered comprehensively in the orogenic simulation.

Key words: Orogen    Dynamics    Numerical simulation    Nonlinear    Couple.
收稿日期: 2001-11-05 出版日期: 2005-05-25
:  P542  


通讯作者: 刘洁   
作者简介: 刘洁(1967-),女,江西宜丰人,副研究员,主要从事计算构造力学研究.
E-mail Alert


刘洁;刘启元;宋惠珍;童晓光. 造山动力学定量研究——理论与方法[J]. 地球科学进展, 2005, 20(5): 533-540.

LIU Jie;LIU Qiyuan;SONG Huizhen;TONG Xiaoguang. A QUANTITATIVE STUDY OF THE OROGENIC DYNAMICS THEORY AND APPROACH. Advances in Earth Science, 2005, 20(5): 533-540.


[1] Carson M A, Kirkby M J. Hillslope Form and Process [M]. New York: Cambridge University Press, 1972. 
[2] Molnar P, Tapponnier P.Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 1975,189: 419-426.
[3] Coukroune P, ECORS Team. The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt [J]. Tectonics, 1989, 8: 23-39.
[4] Deng Qidong,Feng Xianyue,Zhang Peizhen, et al. Active tectonics of the Chinese Tianshan mountain[M]. Beijing: Seismological Press, 2000.[邓起东,冯先岳,张培震,等.天山活动构造[M].北京:地震出版社,2000.]
[5] Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics[J]. Nature, 1976, 264: 319-324.
[6] Bird P, Piper K. Plane-stress finite element models of tectonic flow in southern California[J]. Physics of the Earth and Planetary Interiors, 1980, 21: 158-175.
[7] Vilotte J P, Diagnieres M, Madariaga R. Numerical modeling of intraplate deformation: Simple mechanical models of continental collision[J]. Journal of Geophysical Research, 1982, 87: 10 709-10 728. 
[8] England P, McKenzie D. A thin viscous sheet model for continental deformation[J]. Geophysical Journal of the Royal Astronomical Society, 1982, 70: 295-321.
[9] Houseman G, England P. Finite strain calculation of continental deformation, 1. Method and general results for convergent zones[J]. Journal of Geophysical Research,1986, 91(B3): 3 651-3 663.
[10] England P, Houseman G. Finite strain calculation of continental deformation, 2. Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research,1986, 91(B3): 3 664-3 676.
[11] Vilotte J P, Madariaga R, Daignieres M, Ziekiewicz O. Numerical study of continental collision: influence of buoyancy forces and initial stiff inclusion[J]. Geophysical Journal of the Royal Astronomical Society, 1986, 84: 279-310.
[12] Gao Xianglin,Luo Huanyan,Neugebauer H J. Three dimensional numerical modeling for the dynamics of the continental collision[J]. Seismology and Geology, 1987, 9(2): 65-73.[高祥林,罗焕炎.大陆碰撞动力学的三维数值模拟[J].地震地质,1987, 9(2): 65-73.]
[13] Zhang Dongning, Xu Zhonghuai. Three dimensional elasto-visco numerical simulation of Qinghai-xizang Plateau’s recent tectonic stress field and it’s motion[J].Earthquake research in China,1994, 10(2): 136-143.[张东宁,许忠淮.青藏高原现代构造应力状态及构造运动的三维弹粘性数值模拟[J].中国地震,1994, 10(2): 136-143.]
[14] Chen Kaiping, Ma Jin. Numerical analysis of tectonic deformation by continental collision between India and Eurasia[J].Seismology and Geology, 1995, 17(3): 277-284.[陈开平,马瑾.印度与欧亚大陆碰撞构造变形数值分析[J].地震地质,1995, 17(3): 277-284.]
[15] Willett S, Beaumont C, Fullsack P. Mechanical model for the tectonics of doubly vergent compressional orogens[J]. Geology, 1993, 21: 371-374.
[16] Davis D J, Suppe J, Dahlen F A. Mechanics of fold-and-thrust belts and accretionary wedges[J]. Journal of Geophysical Research, 1983, 88: 1 153-1 172. 
[17] Dahlen F A, Suppe J, Davis D J. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory[J]. Journal of Geophysical Research, 1984, 89: 10 087-10 101. 
[18] Dahlen F A. Noncohesive critical Coulomb wedges: an exact solution[J]. Journal of Geophysical Research, 1984, 89: 10 125-10 133.
[19] Silver E A, Reed D L. Backthrusting in accretionary wedges[J]. Journal of Geophysical Research, 1988, 93: 3 116-3 126. 
[20] Beaument C, Fullsack P, Hamilton J. Erosional control of active compressional orogens. In: McClay K R, eds. Thrust tectonics[C]. London: Chapman and Hall, 1992.1-18.
[21] Willett S. Dynamic and kinematic growth and change of a Coulomb wedge. In: McClay K R, eds. Thrust tectonics[C]. London: Chapman and Hall, 1992.19-31. 
[22] Fullsack P. An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models[J]. Geophysical Journal International, 1995, 120: 1-23. 
[23] Beaumont C, Kamp P J J, Hamilton J, et al. The continental collision zone, South Island, New Zealand: Comparison of geodynamical models and observations[J]. Journal of Geophysical Research, 1996, 101(B2): 3 333-3 359.
[24] Waschbusch P, Beaumont C. Effect of a retreating subduction zone on deformation in simple regions of plate convergence[J]. Journal of Geophysical Research, 1996,101: 28 133-28 148. 
[25] Beaumont C, Ellis S, Pfiffner A. Dynamics of sediment subduction-accretion at convergent margins: Short tem modes, long-term deformation, and tectonic implications[J]. Journal of Geophysical Research, 1999, 104: 17 573-17 601. 
[26] Ellis S, Beaumont C, Pfiffner A. Geodynamic models of crustal-scale episodic tectonic accretion and underplating in subduction zones[J]. Journal of Geophysical Research, 1999, 104: 15 169-15 190.
[27] Ellis S, Fullsack P, Beaumont C. Oblique convergence of the crust driven by basal forcing: implications for length-scales of deformation and strain partitioning in orogens[J]. Geophysical Journal International, 1995, 120: 24-44. 
[28] Beaumont C, Fullsack P, Hamilton J. Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere[J]. Tectonophysics, 1994, 232: 119-132.
[29] Ellis S, Beaumont C, Jamieson R A, et al. Continental collision including a weak zone: the vise model and its application to the Newfoundland Appalachians[J]. Canadian Journal of Earth Science, 1998, 35: 1 323-1 346. 
[30] Willet S, Beaumont C. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision[J]. Nature, 1994, 369: 642-645.
[31] Braun J, Beaumont C. Three-dimensional numerical experiments of strain partitioning at oblique plate boundaries: Implications for contrasting tectonic styles in the southern Coast Ranges, California, and central South Island, New Zealand[J]. Journal of Geophysical Research, 1995, 100(B9): 18 059-18 074. 
[32] Beaumont C, Munoz J A, Hamilton J, et al. Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models[J]. Journal of Geophysical Research, 2000, 105(B4): 8 121-8 145.
[33] Beaumont C, Jamieson, RA, Medvedev S, et al. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan Orogen[J]. Journal of Geophysical Research, 2004, 109,B06406,1-29.
[34] Kooi H, Beaumont C. Escarpment evolution on high-elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection, and reaction[J]. Journal of Geophysical Research, 1994, 99(B6): 12 191-12 209. 
[35] Jamieson R A, Beaumont C, Fullsack P,et al. Barrovian regional metamorphism: Where's the heat? [A].In: Treloar P,O'Brien P, eds. What Controls Metamorphism and Metamorphic Reactions? [C].London: Geological Society Special Publication, 1998,138: 23-51. 
[36] Jamieson R A, Beaumont C, Medvedev S, et al. Crustal channel flows: 2. Numerical models with implications for metamorphicsm in the Himalayan-Tibetan Orogen[J]. Journal of Geophysical Research, 2004, 109,B06407,1-24. 
[37] Owen D R J. Hinton E. Finite Elements in Plasticity — Theory and Practice[M]. Pinerige Press Limited, 1980.
[38] Yin Youquan. General Introduction of Nonlinear Finite Element for Solid Mechanics[M]. Beijing: Peking University Press and Tsinghua University Press, 1987.[殷有泉.固体力学非线性有限元引论[M].北京:北京大学出版社和清华大学出版社,1987.]
[39] Hirt C W, Amsden A A, Cook J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14: 227-253. 
[40] Christensen U R. An Eulerian technique for thermo-mechanical modeling of lithosphereic extension[J]. Journal of Geophysical Research, 1992, 97(B2): 2 015-2 036. 
[41] Batt G E, Braun J. On the thermo-mechanical evolution of compressional orogens[J]. Geophysical Journal International, 1997, 128: 364-382. 
[42] Braun J. Three-dimensional numerical modeling of compressional orogenies: Thrust geometry and oblique convergence[J]. Geology, 1993, 21: 153-156.
[43] Braun J. Three-dimensional numerical simulations of crustal-scale wrenching using a non-linear failure criterion[J]. Journal of Structural Geology, 1994, 16(8): 1 173-1 186. 
[44] Braun J, Sambridge M. Dynamical Lagrangian Remeshing (DLR): a new algorithm for solving large strain deformation problems and its application to fault-propagation folding[J]. Earth and Planetary Science Letters, 1994, 124: 211-220. 
[45] Beaumont C, Quinlan G. A geodynamic framework for interpreting crustal-scale seismic- reflectivity patterns in compressional orogens[J]. Geophysical Journal International, 1994, 116: 754-783.

[1] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[2] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[3] 王晓先, 张进江, 王佳敏. 喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例[J]. 地球科学进展, 2016, 31(4): 391-402.
[4] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[5] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[6] 李建平, 赵 森, 李艳杰, 汪 雷, 孙 诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[7] 陈万峰, 郭 刚, 苗秀全, 王金荣, 胡万龙, 赵斌斌, 樊立飞. 新疆卡拉麦里地区早石炭世火山岩地球化学特征及构造意义[J]. 地球科学进展, 2016, 31(2): 180-191.
[8] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展*[J]. 地球科学进展, 2015, 30(5): 539-551.
[9] 陆志翔, 肖洪浪, 邹松兵, 任娟, 张志强. 黑河流域近两千年人—水—生态演变研究进展[J]. 地球科学进展, 2015, 30(3): 396-406.
[10] 孙运宝, 赵铁虎, 秦柯. 南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J]. 地球科学进展, 2014, 29(9): 1055-1064.
[11] 邹学勇, 张春来, 程宏, 亢力强, 吴晓旭, 常春平, 王周龙, 张峰, 李继峰, 刘辰琛, 刘博, 田金鹭. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.
[12] 张正偲, 董治宝. 风沙地貌形态动力学研究进展[J]. 地球科学进展, 2014, 29(6): 734-747.
[13] 陈为佳, 何登发, 桂宝玲. 宽裂谷的构造样式与成因机制[J]. 地球科学进展, 2014, 29(3): 344-351.
[14] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[15] 包汉勇,郭战峰,张罗磊,黄亚平. 太平洋板块形成以来的中国东部构造动力学背景[J]. 地球科学进展, 2013, 28(3): 337-346.