地球科学进展 ›› 1996, Vol. 11 ›› Issue (4): 367 -371. doi: 10.11867/j.issn.1001-8166.1996.04.0367

学术研究动态 上一篇    下一篇

波、流联合作用下的近岸海底沙波稳定性研究进展
程和琴,王宝灿   
  1. 华东师范大学河口海岸研究所 上海 200062
  • 收稿日期:1995-11-08 修回日期:1996-02-12 出版日期:1996-07-01
  • 通讯作者: 程和琴,女,1962年出生,副教授,主要从事沉积动力学研究。
  • 基金资助:

    国家自然科学基金资助项目“琼州海峡波流联合作用下的沙波稳定性分析”(项目编号:49571007)

DEVELOPMENT OF THE SAND WAVES STABILITY ANALYSIS UNDER THE COMBINED INFLUENCE OF WAVES AND CURRENTS

Chen Heqin , Wang Baocan   

  1. Institute of Estuarine and coastal research, East China Normal University, Shanghai, 200062
  • Received:1995-11-08 Revised:1996-02-12 Online:1996-07-01 Published:1996-07-01

近岸海底大型沙波是一种研究较为薄弱的地貌单元,但它的迁移对港口、航道和海底电缆及钻井平台、输油管道等海洋工程设施建设造成的危害极大。在综述目前国内外有关研究文献的基础上,概要地介绍了作者提出的一种较为简便、省力和有效的沙波迁移速率和沙波稳定性定量评价和预测方法,旨在提高航道通航能力和海洋工程建设的灾害防治和预测能力。

Sedimentary geology of the offshore sand waves has been attracted more attention on the morphological features and internal structures, because the offshore sand waves have been taked for favorable oil and gas reservoir bed. Recently, it′s found that the migration of offshore sand waves has a disastrous impact on the offshore engineering and facilities as the harbor,dock, navigation channel, submarine cable, offshore drilling and pipeline, etc. with the increasing exploitation of the marine resources. Consequently, it′s highly required to evaluate and predict quantitatively, the migration rate of offshore sand waves. Improvement on the migration rate evaluation is approached to the offshore sand waves based on previous studies, which means that the equilibrium range spectrum analysis of sand waves observed is utlized to find the functional relationship between the density function of time spectrum and bed shear stress, migration rate, etc., and then, the theorectical formula to estimate the migration rate of sand waves.

[1]Allen J R L .River bedforms:  progress and problems.  In:  Collison J D,  Lewin J(Eds).Modern and Ancient Fluvial Systems. International Association of Sedimentologists,  Special Publication. 6,  1983. 19-34.
[2]Berne S, Castaing P,  Drezen E L, et al.  Morphology,  internal structure,  and reversal of asymmetry of large subtidal dunes in the entrance to Cironde estuary(France).J Sedimentary Petrology,  1993,  63(5):780- 793.
[3]Dalrymple R W, Knigght R J, Zaitlin B A,et al.  Dynamics and fades model of a macrotidal sand-bar complex, Cobequid Bay-Salmon River Estuary(Bay of Fundy).Sedimentology,  1990, 37: 577-612.
[4]Kostaschhuk R A, Church M A.Macroturbulence generated by dunes: Fraser River,   Canada.  Sedimentary Ceology, 1993, 85: 25-37.
[5]Harris P T.Riversal of subtidal dune asymmetries caused by seasonally reversing wind-driven currents in Torres Strait,northestern Australia.  Continental Shelf Research,1991,  11:655-662.
[6]冯文科,黎维峰.南海北部海底沙波地貌.热带海洋,1994,13 ( 3):40- 46.
[7]刘振夏,夏东兴,汤毓祥,等.渤海东部全新世潮流沉积体系.中国科学(B辑),1994,24(12): 1331- 1338.
[8]Yang C S, Sun J S. Tidalsand ridges on the East China Seashelf. In:  De Boer P L,  A Van Celder,Nio S D(eds). Tide-Influenced Sedimentary Environments and Facies.  Reidel D Publication, 1988. 23-38.
[9]Dyer K R.  Coastal and Estuarine Sediment Dynamics.  A Wiley-Interscience Publication,  John Wiley&Sons,1986. 272- 283.
[10]钱宁, 万兆惠著.泥沙运动力学.北京:科学出版社,1991. 151-165; 537-569.
[11]Pietrzali J D,  Kranenburg C,  Abraham C.Resonant internal w aver in fluid flow.Nature,  1990, 344:844- 847.
[12]Nordin C F J.  Alluvial channel bed forms.  In:  Shen HW(eds).Stochastic Approaches to Water Resourches,1976., 2( 24):1-30.
[13]Levey R A,Kjerfve B,  Cetzen R T .Comparison of bed form variance spectra within a meander bend during flood and average discharge. ,J Sedimentary Petrology,  1980,  50( 1):149- 155.
[14]Oven M W,Thorn M F C.  Effects of waves on sand transport by currents. Proc 16th Coastal Engineering Conf, ASCE,  1978. 1675-1687.
[15]Bagnold R A. Sedimentation:  beach and near-shore processes. In:  Hill M N(Eds).The Sea.  New York.Wilev-Interscience,  1963.507-529.
[16]Cadd P E, Lavell J W, Swift D J P. Estimates of sand transport on the New York shelf using near-bottom current meterobservations. J Sedimentary Petrology,  1978,  48:  239-252.
[17]Bijker E W .Some considerations about scales for coastal models with movable beds.  Report No 50,  Delft Hydraulics Laboratory,  1967.  142.
[18]Swart D H.  Coastal sediment transport:  computation of longshore transport.  Rep No 968,Waterloopkundig Laboratorium( Delft Hydraulics Laboratory),1976. 61.
[19]Jonsson I C.Waye boundary layers and friction factors Proc. 10th Coastal Engineering Conf, ASCE,  1966,  1:127-148.
[20]Marisen O S, Crant W D.  Sediment transport in the coastal environment.  Rep No 209,Ralph M .Parsons Laboratory for Water Resources and Hydrodynamics,  Dept of Civ Eng,  M IT,1979. 105.
[21]Pattiaratchi C B, Collins M  B.  Sand transport under the combined influence of waves and tidal currents:an assessment of available formulae.  Marine Geology,  1985,  67:  83-100.
[22]江汉石油学院情报—水槽专集,1992, (1) : 32- 48.

[1] 董治宝,吕萍,李超,胡光印. 火星大沙波纹特征及其形成机制[J]. 地球科学进展, 2020, 35(10): 1006-1015.
[2] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[3] 尹帅, 丁文龙, 杨文娜, 赵威, 张敏, 丛森. 考虑地层各向异性井壁稳定性研究进展[J]. 地球科学进展, 2015, 30(11): 1218-1230.
[4] 范留明, 耿鹏超. 突变理论在边坡工程应用的研究进展[J]. 地球科学进展, 2015, 30(11): 1268-1277.
[5] 万修全, 刘泽栋, 沈飙, 林霄沛, 吴德星. 地球系统模式CESM及其在高性能计算机上的配置应用实例[J]. 地球科学进展, 2014, 29(4): 482-491.
[6] 刘首华,牟林,刘克修,王兴,李欢,高佳. 畸形波研究的进展及存在问题[J]. 地球科学进展, 2013, 28(6): 665-673.
[7] 马巍,牛富俊,穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191.
[8] 宋到福,何登发. 断层相的概念及应用[J]. 地球科学进展, 2010, 25(9): 907-914.
[9] 冉有华,李新,王维真,晋 锐. 黑河流域临泽盐碱化草地网格尺度多层土壤水分时空稳定性分析[J]. 地球科学进展, 2009, 24(7): 817-824.
[10] 王澄海,崔洋. 西北地区近50年降水周期的稳定性分析[J]. 地球科学进展, 2006, 21(6): 576-584.
[11] 孙波;解宪丽. 全球变化下土壤功能演变的响应和反馈[J]. 地球科学进展, 2005, 20(8): 903-909.
[12] 于贵瑞;王绍强;陈泮勤;李庆康. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展, 2005, 20(5): 568-577.
[13] 林万涛;董文杰. 计算地球流体力学的回顾、进展及展望[J]. 地球科学进展, 2004, 19(4): 599-604.
[14] 妥进才. 深层油气研究现状及进展[J]. 地球科学进展, 2002, 17(4): 565-571.
[15] 熊尚发,丁仲礼,刘东生. 第四纪气候变化机制研究的进展与问题[J]. 地球科学进展, 1998, 13(3): 265-272.
阅读次数
全文


摘要