地球科学进展 ›› 1991, Vol. 6 ›› Issue (1): 32 -39. doi: 10.11867/j.issn.1001-8166.1991.01.0032

干旱气候变化与可持续发展 上一篇    下一篇

洋脊地质学与成矿学
潘传楚   
  1. 中国科学院长沙大地构造研究所  410013
  • 收稿日期:1990-04-30 修回日期:1990-10-03 出版日期:1991-01-01
  • 通讯作者: 潘传楚

The Geology and Metallogeny of Oceanic Ridges

Pan Chuanchu   

  1. Changsha Institute of Geotectonics, Academia Sinica
  • Received:1990-04-30 Revised:1990-10-03 Online:1991-01-01 Published:1991-01-01

洋脊分活动型和稳定型两种,柱状地质剖面由未固结沉积物和上、下洋壳三部分构成,横向断裂带发育。岩石蚀变、变质普遍,可与大陆拉斑玄武岩对比。洋脊正在进行两种成矿过程。近20年在洋脊发现的矿床(化)可分为11个类型,其中有的具有工业意义。洋脊研究的深入,将进一步揭示洋壳的奥秘,还将提高对陆壳以及整个地球历史演化进程中的沉积、岩浆、变质、成矿、成岩和构造等作用以及这些作用之间相互促进和制约关系的认识。

Oceanic ridges are subdivided into active type and stable (aseismic) type. The vertical sequence of rock units of oceanic ridges consists of unconsolideted oceanic floor sediments,upper oceanic crustal layer and lower oceanic crustal layer. On oceanic ridges transverse fracture zones are general, metamorphism and alteration are common just like those of the continental tholeiite, and there are two metallogenetic processes in which mineral deposits are being formed. The ore deposits (mineralization) discovered on oceanic ridges in recent 20 years are subdivided into 11 patterns,some of them have the value of commodity. The study of oceanic ridges-will reveal the secrets of the oceanic crust, and help to recognize the evolution of the continental crust and the earth, especially, sedimentation, magmatism, metamorphism, diagenesis, metallogenation and tectonics, as well as the relationship of them.

[1] Andrews, A. J. and Fyfe, W. s.,1976. Metamorphism amd massive sulphide generation in oceanic crust. Geoscience Canada, 3.
[2] Brevart, 0,Duple, B. and Allegre, C. J.,1982. Metallogenetic provinces and the remubization process studied by lead isotopes, lead zinc ore deposits from the southern Massif Central, France. Econ. Geol.,77.
[3] Bonatti, E.,Kraemer, T. and Rydell, H.,1972. Classification and genesis of submarine iron-manganese deposits.  In D.Horn , ed.,Ferrofianganese Deposition on the Ocean Floor. Natl. Sci. Foundation, washington, D. C.
[4] Bischoff, J. L.,Rosenbaur, R. J.,Aruscavage, P. J.,Baedecker, P.A,and Clock, J. G.,1983, Sea-floor masive sulfide deposits from 21°N, East Pacific Rise, Juan de Fuca Ridge, and Galapagos Rift: Bult chemical composition and economic implications, Eton.Geol. vol. 78.
[5] Francheteau, J. et al.,1979, Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature, 277.
[6] Franklin, J. M.,and Thorpe, R. I. 1982.Comparative metallogeny of the Superior, Siave and Churchill provinces: Geol. Assoc. Canada Spec. vol. 25.
[7] Goodfellow, W. D. and Blaise, B. 1988. Sulphide formation and hydrothermal alteration of hemipelagic sediment in Middle valley, northern Juan de Fuca Ridge: Canadian Mineralogist, vol. 26.
[8] Honnorez, J. and Von Herzen, R. P.,et al.,1981, Hydrothermal mounds and young ocean crust of the Galapagos: Preliminety deep sea drilling results, Leg 70. Geol. Soc. Am. Bull,Pt. 1, 92.
[9] Hekinian, R. 1982, Petrology of the ocean floor. Elsevier.
[10] Hannington, M. D.,1986, Geology, Mineralogy, and Geochemistry of a silica-sulfate-sulfide deposit, Axial Seamount, N. E. Pacific Ocean, Unpub. M. Sc. thesis, univ.Toronto.
[11] Hannington M. D.,Peter, J. M.,and Scott, S. D. 1986, Gold in sea-floor Polymetallitc sulfide depists: Econ. Geol.vol. 81.
[12] Keays, R. R. and Scoti, R. B.,1976, Precious metals in ocean-ridge basalts: implcation for basalts as source rocks for gold mineralization. Econ. Geol. vol. 71.
[13] Koski, R. A.,Scott, S. D.,et a1.1987, Hydrothermal processes and massive sulfide deposits on the Juan de Fuca Ridge and other northeast Pacific spreading axes: Circum-Pacific Council for Energy and Mineral Resources Earth Sci.Ser.,vol. 6.
[14] Laznicka, p. , 1985, Empirical Metallogeny. Elsevier.
[15] Rona, P. A. ,1978, Criteria for recognition of hydrothermal mineral deposits in oceanic crust. Econ. Geol. vol. 73.
[16] Silantev, S. A. and Chernysheva, V. I.,1981, Metamorfizm giperbazitgabbro-hazaltovovo kompleksa khrebta Karlsberg. Izvest. A. N.SSSR,Ser. Geol.,No. 12-1981.

[1] 张佳伟,李汉敖,张会平,徐心悦. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 2020, 35(8): 848-862.
[2] 刘懿馨, 侯克选, 沙鑫, 马蓁, 王金荣. 北祁连西段熬油沟组玄武岩地球化学特征及构造意义[J]. 地球科学进展, 2018, 33(2): 189-205.
[3] 陈为佳, 何登发, 桂宝玲. 宽裂谷的构造样式与成因机制[J]. 地球科学进展, 2014, 29(3): 344-351.
[4] 倪师军,徐争启,张成江,宋 昊,罗 超. 西南地区黑色岩系铀成矿作用及成因模式探讨[J]. 地球科学进展, 2012, 27(10): 1035-1042.
[5] 王奖臻,李泽琴,黄从俊. 康滇地轴元古代重大地质事件与拉拉IOCG矿床成矿响应[J]. 地球科学进展, 2012, 27(10): 1074-1079.
[6] 徐争启,程发贵,唐纯勇,宋 昊,张成江,倪师军,郭景腾,祁家明. 广西大新地区辉绿岩地质地球化学、年代学特征及其意义[J]. 地球科学进展, 2012, 27(10): 1080-1086.
[7] 姚素平,丁 海,胡凯,焦堃. 我国南方早古生代聚煤过程中硫的生物地球化学行为及成矿效应[J]. 地球科学进展, 2010, 25(2): 174-183.
[8] 李小虎,初凤友,雷吉江,赵建如. 慢速—超慢速扩张西南印度洋中脊研究进展[J]. 地球科学进展, 2008, 23(6): 595-603.
[9] 王永锋;金振民;. 地震波各向异性:窥测地球深部构造的“探针”[J]. 地球科学进展, 2005, 20(9): 946-953.
[10] 安伟,曹志敏,郑建斌,刘激,陈敏. 古代与现代火山成因块状硫化物矿床研究进展[J]. 地球科学进展, 2003, 18(5): 773-782.
[11] 杨巍然,隋志龙,MatsVD. 俄罗斯贝加尔湖区伸展构造及与中国东部伸展构造对比[J]. 地球科学进展, 2003, 18(1): 45-049.
[12] 金瞰昆,杜振川,李世峰. 欧洲有机质成矿作用研究进展[J]. 地球科学进展, 2002, 17(5): 787-788.
[13] 陶明信. 论中国含油气区的构造环境性质、分区及其成油气专属性[J]. 地球科学进展, 2001, 16(6): 746-754.
[14] 王奖臻,李朝阳,胡瑞忠. 斑岩铜矿研究的若干进展[J]. 地球科学进展, 2001, 16(4): 514-519.
[15] 周少平. 对与我国金属矿产资源探寻有关基础研究的思考和讨论[J]. 地球科学进展, 1999, 14(6): 555-558.
阅读次数
全文


摘要