青藏高原冰川加速退缩导致冰川累积的重金属随释放并发生迁移,对冰川下游生态系统 与人类健康产生潜在风险,但目前针对冰川退缩区环境介质中重金属的赋存特征和生态风险的研 究较为缺乏。选取藏东南海洋型冰川米堆冰川为对象,研究冰川表碛与退缩区土壤及冰川融水环 境中典型重金属的分布特征与风险。结果表明,冰川表碛与退缩区土壤中重金属总含量为144.8~ 520.2 mg/kg,以Zn、As 和Cr 为主且空间变化较大,Cd 和Hg 含量较低。冰川从末端表碛覆盖的裸 地开始,形成以沙棘和杨树为先锋树种,最终向林芝云杉和大果圆柏顶级树种过渡的演替序列。 重金属含量随土壤发育、植被演替及退缩区内人类活动增加呈逐渐增加趋势,且在退缩区第三阶 段重金属含量最高,多数重金属含量在不同阶段之间存在显著差异,与土壤pH值和碳氮磷等环境 因子显著相关。冰湖至下游河流中的重金属总浓度范围为3.76~33.37 μg/L,以Zn 和As 为主,均远 低于我国I 类水限值,其中冰川观景台附近的冰前湖(光谢错)末端出口处及冰湖下游流经村庄段 的重金属浓度相对较高,这与冰川区内人类活动密切相关。冰川表碛与退缩区土壤的重金属整体 处于中等潜在生态风险水平,Cd 和As 为构成风险的主要重金属,冰湖及其下游水环境则无风险。 研究结果可为进一步探究青藏高原冰川生态系统变化下重金属生物地球化学及其生态影响提供 经典案例和基础数据。
中图分类号:
[1] |
雷蒙蒙, 郑倩倩, 胡义, 毛雯靖, 殷永胜, 刘巧, 关卓, 鲁旭阳, 刘琛. 藏东南地区米堆冰川表碛与退缩区重金属分布特征与风险[J]. 地球科学进展, 2025, 40(7): 753-765. |
[2] |
夏亚飞, 刘宇晖, 高庭, 刘承帅. 基于金属稳定同位素的矿冶影响区土壤重金属污染源解析研究进展[J]. 地球科学进展, 2023, 38(4): 331-348. |
[3] |
曾辉, 周启星. 二硫化钼在水环境修复中的应用前景分析[J]. 地球科学进展, 2022, 37(5): 462-471. |
[4] |
赵转军, 杨艳艳, 庞瑜, 赵立芳, 管宇立, 张兆虎. 铁碳共沉作用对土壤重金属的吸附性能研究进展[J]. 地球科学进展, 2017, 32(8): 867-874. |
[5] |
宗庆霞, 窦磊, 侯青叶, 杨忠芳, 游远航, 唐志敏. 基于土地利用类型的土壤重金属区域生态风险评价:以珠江三角洲经济区为例[J]. 地球科学进展, 2017, 32(8): 875-884. |
[6] |
唐志敏, 侯青叶, 游远航, 杨忠芳, 李括. 珠三角平原区第四系剖面重金属分布特征及其影响因素[J]. 地球科学进展, 2017, 32(8): 885-898. |
[7] |
杜佳媛, 魏永鹏, 刘菲菲, 代燕辉, 赵建, 王震宇. 氧化石墨烯对环境污染物的吸附行为及吸附机理[J]. 地球科学进展, 2016, 31(11): 1125-1136. |
[8] |
张兆永, 吉力力·阿不都外力, 姜逢清. 天山山地表层土壤重金属的污染评价及生态风险分析[J]. 地球科学进展, 2014, 29(5): 608-616. |
[9] |
宋焱,徐颂军,张勇,廖秀英,张林英,杨秀,杨文槐,冯晓丹. 白云山地表水重金属健康风险不确定性评价[J]. 地球科学进展, 2013, 28(9): 1036-1042. |
[10] |
周永章,沈文杰, 李 勇,窦 磊,李文胜,赖启宏,杜海燕,钟莉莉,梁 婷. 基于通量模型的珠江三角洲经济区土壤重金属地球化学累积预测预警研究[J]. 地球科学进展, 2012, 27(10): 1115-1125. |
[11] |
温健婷,张霞,张兵,赵冬. 土壤铅含量高光谱遥感反演中波段选择方法研究[J]. 地球科学进展, 2010, 25(6): 625-629. |
[12] |
陈仁升,刘时银,康尔泗,韩海东,卿文武,王建. 冰川流域径流估算方法探索——以科其喀尔巴西冰川为例[J]. 地球科学进展, 2008, 23(9): 942-951. |
[13] |
李泽琴,侯佳渝,王奖臻. 矿山环境土壤重金属污染潜在生态风险评价模型探讨[J]. 地球科学进展, 2008, 23(5): 509-516. |
[14] |
陈翠华,倪师军,何彬彬,张成江. 基于GIS技术的江西德兴地区水系沉积物重金属污染的潜在生态危害研究[J]. 地球科学进展, 2008, 23(3): 312-322. |
[15] |
赵转军,南忠仁,王胜利,刘晓文,陶燕. 干旱区绿洲土壤共存重金属元素形态变化及生物有效性实验分析[J]. 地球科学进展, 2008, 23(11): 1193-1200. |