Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (4): 382-398    DOI: 10.11867/j.issn.1001-8166.2019.04.0382
固体地球科学     
金川超大型Ni-Cu-(PGE)矿床橄榄石微量元素特征及地质意义
康健1,2(),陈列锰1(),宋谢炎1,戴智慧1,郑文勤1
1. 中国科学院地球化学研究所 矿床地球化学国家重点实验室,贵州 贵阳 550081
2. 中国科学院大学,北京 100049
Trace Elements in Olivines from the Giant Jinchuan Ni-Cu-(PGE) Deposit, NW China, and Its Geological Implication
Jian Kang1,2(),Liemeng Chen1(),Xieyan Song1,Zhihui Dai1,Wenqin Zheng1
1. State Key Laboratory of Ore Deposit Geochemistry, Institude of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(11855 KB)   HTML
摘要:

我国金川超大型铜镍硫化物矿床是世界上第三大在采岩浆硫化物矿床,Ni开采量仅次于俄罗斯Noril’sk-Talnakh和加拿大Sudbury矿床,其成因研究备受关注。利用激光—等离子体质谱(LA-ICP-MS)原位分析了金川岩体中橄榄石微量元素含量,并探讨了影响元素含量变化的因素,进而阐述成岩及成矿过程。分析结果显示橄榄石中元素Ni,Cr与Fo呈负相关,Mn/Fe与Fo呈正相关,而Mn/Zn,Zn/Fe与Fo无相关性。在原始地幔橄榄石多元素标准化图中,金川Ⅰ号和Ⅱ号岩体橄榄石具相同的配分模式,均显示Cr,V,Ni,Co和Ti的亏损,富集不相容元素Zr,Y,Ti,Sc和Ca的特征。元素变化特征暗示Ⅰ号和Ⅱ号岩体具相同的母岩浆成分;与铬尖晶石的共结使橄榄石亏损Cr,V和Ti元素,而熔离的硫化物及其与橄榄石的相互反应共同影响着橄榄石中Ni和Co元素的含量。Ⅱ号岩体橄榄石较Ⅰ号岩体具较低的Cr和V含量,暗示Ⅱ号岩体母岩浆较Ⅰ号岩体经历了更高程度的演化。橄榄石高的Mn/Zn值(>13)和低的Zn/Fe值(<11)指示金川岩体岩浆可能起源于橄榄岩地幔的部分熔融,而非辉石岩地幔源区。

关键词: 橄榄石微量元素岩浆演化金川岩体    
Abstract:

The giant Jinchuan magmatic sulfide deposit in China is the third largest mining deposits in the world. Although many research have been done, there still exist some debates in the genesis of deposit. This study using the LA-IC-MS to obtain the trace elements concentrations of the olivine in order to discuss the mechanism of influence the element variability and illustrate the process of magmatism and ore-forming. The analytical results show that Ni, Co correlate negatively with Fo in the olivine, Mn/Fe is positively correlate with Fo, while Mn/Zn and Zn/Fe show no obvious correlation with Fo. The primitive mantle olivine-normalized trace element patterns of the Jinchuan olivine show that Jinchuan Ⅰ, Ⅱ intrusions have the same trace elements characteristics, which display negative Cr, V, Ni, Co and Ti anomalies and enrichment of Zr, Y, Ti, Sc and Ca. The multi-element patterns of the Jinchuan olivine imply same parental magma in the intrusion Ⅰ and Ⅱ. The spinel which cocrystallization with the olivine make it display negative Cr, V and Ti anomalies. The contents of Ni and Co in olivine are influenced by the process of sulfide segregation and the reaction between sulfide and olivine. The lower content of Cr and V in olivine of the intrusion Ⅱ compared with the intrusion Ⅰ imply that the parental magma of the intrusion Ⅱ was more evolved. Higher Mn/Zn (>13) ratios and lower Zn/Fe (<11) ratios indicate that the magma of Jinchuan intrusion likely originate from partial melting of peridotite mantle possibly, instead of pyroxene mantle sources.

Key words: Olivine    Trace elements    Magmatic evolution    Jinchuan instrusion.
收稿日期: 2018-12-25 出版日期: 2019-05-27
ZTFLH:  P595  
基金资助: 国家重点研发计划项目“典型成矿系统演化规律与时空自相似结构”(编号:2016YFC0600503);国家自然科学基金面上项目“Mg-Fe同位素对东昆仑造山带夏日哈木和石头坑德含铜镍硫化物岩体源区的制约”(编号:41873026)
通讯作者: 陈列锰     E-mail: kaingjian@mail.gyig.ac.cn;chenliemeng@vip.gyig.ac.cn
作者简介: 康健(1994-),男,甘肃天水人,硕士研究生,主要从事岩浆硫化物矿床研究. E-mail:kaingjian@mail.gyig.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
康健
陈列锰
宋谢炎
戴智慧
郑文勤

引用本文:

康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型Ni-Cu-(PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.

Jian Kang,Liemeng Chen,Xieyan Song,Zhihui Dai,Wenqin Zheng. Trace Elements in Olivines from the Giant Jinchuan Ni-Cu-(PGE) Deposit, NW China, and Its Geological Implication. Advances in Earth Science, 2019, 34(4): 382-398.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.04.0382        http://www.adearth.ac.cn/CN/Y2019/V34/I4/382

图1  龙首山地体和金川岩体地质简图
图2  金川岩体不同岩相中橄榄石及硫化物结构
采样位置 I号岩体下部岩相带
样号 JC06-233 JC13-106 JC13-102 JC13-101 JC13-107 JC13-230
岩性 粗粒硫化物橄榄岩 粗粒二辉橄榄岩 粗粒硫化物二辉橄榄岩 粗粒斜长二辉橄榄岩 粗粒二辉橄榄岩 粗粒二辉橄榄岩
点号 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3 Ol-4 Ol-1 Ol-2 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2
主量元素质量百分含量/% MgO 43.4 43.3 43.6 42.1 42.9 42.3 43.7 41.5 42.1 42.7 42.0 42.9 41.6 41.6 42.3 41.9 41.0
Al2O3 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SiO2 40.2 41.0 40.5 40.0 40.3 40.0 40.1 39.7 39.3 39.1 39.8 40.2 39.7 39.5 39.6 39.1 39.5
CaO 0.1 0.1 0.1 0.5 0.1 0.0 0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.2 0.1 0.0 0.0
TiO2 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
Cr2O3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MnO 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
FeO 15.0 14.9 15.0 15.1 15.8 16.0 15.8 17.4 17.2 17.2 17.2 16.5 17.6 16.8 16.6 17.9 17.1
Na2O 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
K2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NiO 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
总量 99.1 99.8 99.7 98.3 99.6 98.9 100.3 99.2 99.4 99.6 99.7 100.1 99.2 98.6 98.9 99.0 98.0
Fo 83.7 83.9 83.8 83.3 82.9 82.5 83.2 81.0 81.3 81.5 81.3 82.2 80.8 81.5 82.0 80.7 81.1
微量元素/(μg/g) Li 6.62 3.97 3.73 3.25 3.17 3.79 5.01 6.40 5.88 2.26 4.18 2.94 3.38 6.58 6.26 7.27 5.02
Na 47.8 25.2 17.4 15.5 13.8 15.2 20.0 16.9 55.1 7.1 5.3 34.8 20.2 19.4 5.4 112.0 22.3
Al 60.7 95.2 118.4 140.6 70.6 70.0 119.5 129.9 108.1 186.0 121.7 320.0 97.8 109.5 70.1 98.4 92.3
P 68.6 58.7 41.5 44.1 47.0 41.0 54.8 79.7 66.6 48.4 80.7 66.1 45.2 63.2 61.8 86.3 49.9
Ca 586.0 792 950 1308 609 602 733 1154 858 324 465 1550 821 523 263 137 56.0
Sc 8.50 5.99 3.99 4.26 4.92 4.12 4.53 4.66 3.97 3.56 4.16 5.64 3.86 3.48 3.92 1.54 1.51
Ti 151. 108 122 59 137 153 78.9 59.3 59.9 47.3 35.9 40.4 86.5 106 113 119 130
V 6.64 4.28 5.64 5.06 3.87 3.99 5.60 5.95 4.67 5.29 2.15 11.5 4.90 4.08 3.70 1.30 1.19
Cr 145.0 138.3 135.1 122.1 71.4 97.5 116.9 89.7 82.5 94.7 95.2 161.7 80.8 61.8 34.9 83.4 76.5
Mn 1 882 1 844 1 674 1 705 1 706 1 701 1 686 2 204 1 889 1 600 1 977 1 955 1 772 1 821 1 820 1632 1553
Co 166 180 176 180 166 164 171 197 176 162 176 173 167 160 166 107 109
Ni 1 834 1 668 1 870 1 906 1 973 2 050 1 870 2 051 2 125 1 783 1 762 1 652 1 638 1 505 1 523 1 418 1 494
Zn 91.2 98.3 103.3 90.6 77.4 80.4 76.0 100.4 79.0 85.6 99.2 145.9 70.9 56.6 74.3 118.3 113.9
Y 0.47 0.35 0.22 0.25 0.60 0.37 0.19 0.95 0.22 0.07 0.12 0.40 0.31 0.19 0.18 0.39 0.19
Zr 0.41 0.04 0.15 0.05 0.35 0.45 0.10 0.17 0.13 0.04 0.02 0.06 0.18 0.26 0.49 0.12 0.08
采样位置 I号岩体上部岩相带
样号 JC06-234 JC06-237 JC13-114 JC13-116 JC13-112 JC13-118 JC13-121
岩性 细粒含硫化物橄榄岩 细粒含硫化物橄榄岩 细粒含硫化物橄榄岩 细粒含硫化物橄榄岩 细粒含硫化物橄榄岩 细粒二辉橄榄岩 细粒橄榄辉石岩
点号 Ol-1 Ol-2 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3
主量元素质量百分含量/% MgO 44.9 45.1 43.7 43.6 43.1 43.1 44.2 43.7 42.2 44.1 43.9 44.0 44.6 43.7 42.8 42.1 43.9 42.0 41.7 42.2
Al2O3 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SiO2 40.2 39.5 40.6 40.9 40.2 39.9 40.9 40.1 39.3 38.6 40.3 40.2 40.8 40.3 39.4 40.3 40.6 39.1 38.8 39.1
CaO 0.2 0.0 0.0 0.3 0.1 0.3 0.1 0.0 0.1 0.1 0.3 0.0 0.3 0.1 0.1 0.2 0.1 0.1 0.1 0.0
TiO2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cr2O3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MnO 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
FeO 13.4 13.1 14.0 14.1 14.4 15.0 15.0 14.8 14.2 14.4 14.8 14.3 14.9 14.6 15.7 16.5 15.4 17.1 17.1 17.5
Na2O 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0
K2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NiO 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
总量 99.2 98.3 98.7 99.6 98.3 98.9 100.8 99.2 96.4 97.8 99.8 99.1 101.2 99.3 98.6 99.6 100.6 98.7 98.2 99.3
Fo 85.6 86.0 84.8 84.7 84.2 83.6 84.0 84.1 84.1 84.5 84.1 84.6 84.2 84.2 83.0 81.9 83.5 81.5 81.3 81.2
微量元素/(μg/g) Li 5.82 3.99 11.93 7.35 6.74 3.41 3.32 3.76 5.93 4.72 5.38 2.62 5.32 3.73 6.16 4.33 6.79 5.32 4.30 7.97
Na 11.5 10.9 25.1 23.3 24.7 86.0 22.1 18.6 690.0 16.3 224.0 23.8 27.9 14.9 8.7 30.2 10.0 12.8 11.3 18.2
Al 120.3 126.5 164.0 91.1 122.6 107.8 109.2 90.9 89.7 136.9 114.5 118.8 151.0 101.3 142.1 173.4 161.9 95.9 111.1 114.8
P 91.8 80.4 204.6 105.6 95.6 57.7 50.1 59.3 64.1 50.5 60.6 66.4 70.9 64.4 72.4 56.9 73.6 67.9 47.0 81.1
Ca 929 741 979 291 889 433 641 603 540 762 1160 867 759 723 858 589 605 900 775 776
Sc 6.26 6.83 6.50 7.05 6.53 2.98 4.97 4.55 3.68 4.53 3.98 5.22 4.61 4.66 3.61 3.82 3.50 3.93 3.71 4.03
Ti 90.4 137 70.5 133 140 137 78.4 118 160 71.1 74.9 90.5 113 152 36.6 44.0 55.0 69.8 91.2 48.8
V 4.44 4.31 4.65 3.23 4.11 6.82 5.55 4.27 4.46 4.91 4.27 4.91 4.59 4.36 3.87 4.09 4.49 4.98 3.88 4.62
Cr 123.8 126.4 127.8 68.3 158.0 66.2 108.9 82.9 80.7 124.1 103.7 97.8 86.7 105.6 105.0 98.4 114.7 88.0 82.6 96.1
Mn 1 596 1 680 1 616 1 823 1 760 1 586 1 657 1 602 1 589 1 621 1 614 1 599 1 736 1 642 1 625 1 931 1 626 1 798 1 810 1 828
Co 166 166 164 99 168 164 173 173 168 168 167 158 176 163 158 170 195 148 157 163
Ni 2 081 2 528 1 961 1 819 2 003 2 026 1 853 1 935 1 747 1 765 1 782 2 152 2 138 2 017 1 921 1 826 1 873 1 559 1 533 1 604
Zn 80.8 67.9 66.3 60.9 70.6 45.4 71.1 82.9 85.9 69.2 82.3 52.0 74.1 97.3 84.9 67.5 57.6 72.8 58.7 57.4
Y 0.27 0.57 0.43 0.22 0.42 0.20 0.27 0.32 0.24 0.22 0.21 0.38 0.48 0.28 0.07 0.07 0.06 0.56 0.43 0.26
Zr 0.04 0.06 0.07 0.50 0.72 0.32 0.16 0.26 0.23 0.11 0.08 0.19 0.24 0.44 0.02 0.05 0.06 0.13 0.19 0.09
采样位置 II号岩体
样号 JC12-201 JC12-207 JC13-259 JC12-206 JC13-258 JC13-259 JC13-254
岩性 中粒橄榄辉石岩 中粒硫化物二辉橄榄岩 中粒二辉橄榄岩 中粒硫化物二辉橄榄岩 中粒二辉橄榄岩 中粒二辉橄榄岩 中粒斜长石二辉橄榄岩
点号 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3 Ol-1 Ol-2 Ol-3

主量元素质量

百分含量/ %

MgO 44.1 42.6 43.4 43.4 43.7 43.6 42.5 42.1 43.2 41.1 42.7 42.3 42.4 41.7 42.7 42.7 42.6 42.1 42.6 41.5 42.4
Al2O3 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SiO2 39.9 39.3 39.7 39.3 39.4 39.4 40.2 39.2 40.8 38.7 40.1 38.8 39.8 39.6 39.6 39.9 40.7 38.9 38.5 38.5 40.2
CaO 0.0 0.1 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.2 0.1 0.1 0.1 0.2
TiO2 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.1
Cr2O3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
MnO 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
FeO 15.1 14.3 15.6 15.4 14.9 14.9 16.1 16.1 15.6 17.0 16.5 16.7 16.9 17.3 16.3 16.2 16.6 16.4 17.1 17.5 16.6
Na2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
K2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NiO 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
总量 98.6 96.8 99.3 98.6 98.5 98.6 99.4 97.7 100.1 97.2 99.9 98.3 99.6 99.2 99.1 99.3 100.5 97.9 98.9 98.4 99.8
Fo 83.9 84.1 83.2 83.4 83.9 83.9 82.5 82.4 83.2 81.2 82.2 81.9 81.7 81.2 82.4 82.5 82.1 82.1 81.6 80.8 82.0

微量元素

/(μg/g)

Li 4.48 6.04 4.76 3.32 6.66 4.78 6.62 5.71 8.22 11.97 3.76 4.98 5.53 4.29 4.38 4.81 6.54 2.13 3.78 4.38 7.92
Na 26.2 8.2 12.4 6.7 5.2 7.3 19.5 44.5 8.7 372.0 17.6 47.6 12.8 9.6 10.1 14.0 12.9 6.5 33.6 77.0 6.3
Al 131.8 75.9 107.5 101.0 53.7 82.3 229.0 62.7 99.2 442.0 86.9 87.8 112.9 91.9 132.1 113.7 98.8 87.3 101.7 123.5 62.7
P 56.8 89.4 62.1 57.9 84.9 52.8 65.4 55.0 68.2 140.1 60.4 59.9 67.1 64.9 70.6 74.8 115.3 45.2 47.8 58.3 108.9
Ca 1035 545 277 305 483 617 676 2440 452 348 629 665 739 697 788 790 577 327 870 316 323
Sc 4.88 4.70 3.65 3.73 3.44 4.37 5.56 4.07 4.71 0.37 4.71 4.81 5.50 4.82 6.25 5.16 4.65 5.40 4.27 5.76 3.34
Ti 76 116 160 133 109 78 132 103 151 55 107 113 118 66 88 53 95 118 137 100 154
V 4.73 2.75 2.63 3.42 1.92 3.27 5.76 2.52 4.04 0.86 5.32 5.67 4.83 4.44 5.40 4.28 3.77 2.66 4.56 4.87 3.27
Cr 106.2 53.2 51.1 68.7 41.0 66.0 164.0 45.1 70.5 42.1 110.9 75.8 73.7 56.5 72.3 55.5 62.1 47.4 60.4 65.1 27.0
Mn 1 704 1 610 1 619 1 554 1 573 1 616 1 691 1 766 1 674 1 642 1 745 1 703 1 733 1 692 1 786 1 738 1 624 1 566 1 812 1 779 1 729
Co 182 167 166 165 168 175 174 169 174 94 115 103 174 171 170 171 171 179 176 163 189
Ni 1 767 1 670 1 635 1 624 1 686 1 679 1 676 1 646 1 715 1 029 1 605 1 605 1 614 1 635 1 571 1 649 1 693 1 778 1 737 1 655 1 882
Zn 100.5 61.3 63.9 65.2 77.3 47.5 73.2 74.3 73.0 72.7 88.5 81.9 97.9 88.7 95.6 74.2 73.2 83.0 74.1 60.5 80.9
Y 0.56 0.36 0.58 0.12 0.17 0.24 0.70 0.29 0.38 0.11 0.31 0.69 0.54 0.36 0.61 0.54 0.29 0.36 0.39 0.23 0.21
Zr 0.21 0.57 0.30 0.40 0.37 0.25 0.62 0.55 0.57 0.25 0.25 0.30 0.39 0.18 0.21 0.09 0.32 0.56 0.54 0.35 0.44
表1  金川岩体橄榄石主、微量元素分析结果
图3   LA-ICP-MS标样分析结果与推荐值比较
图4  橄榄石中微量元素在岩体和岩相间的变化
图5  金川超镁铁质岩体橄榄石中主要微量元素标准化蛛网图
图6  金川超镁铁质岩体中橄榄石Fo与微量元素二元相关图
图7  金川超镁铁质岩体橄榄石微量元素地幔源区的判别图(据参考文献 [32,45] 修改)
Cr V Ni Co
D 硫化物 0.9 0.6 500 70
D 橄榄石 0.9 0.09 7 3.2
D 尖晶石 240 6 2 4.6
Co/(μg/g) 180 50 300 60
表2  微量元素Cr, V, Ni和Co的分配系数和Co值
1 Naldrett A J . Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration [M]. Berlin Heidelberg: Springer, 2004.
2 Naldrett A J . Fundamentals of magmatic sulfide deposits [J]. Reviews in Economic Geology, 2011,17(1): 1-50.
3 Song Xieyan , Hu Ruizhong , Chen Liemeng . Characteristics and inspirations of the Ni-Cu sulfide deposits in China [J]. Journal of Nanjing University (Natural Science), 2018, 54(2): 221-234.
3 宋谢炎, 胡瑞忠, 陈列锰 .中国岩浆铜镍硫化物矿床地质特点及其启示 [J].南京大学学报:自然科学, 2018, 54(2): 221-234.
4 Tang Zhongli . Metallogenic model of Jinchuan Ni-Cu sulfide deposit [J]. Geoscience, 1990,(4): 55-64.
4 汤中立 . 金川硫化铜镍矿床成矿模式 [J].现代地质, 1990,(4): 55-64.
5 Chai Gang , Naldrett A J . The Jinchuan ultramafic intrusion: Cumulate of a High-Mg basaltic magma [J]. Journal of Petrology, 1992, 33(2): 277-303.
6 Chai Gang , Naldrett A J . Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, Northwest China [J]. Economic Geology, 1992, 87(6): 1 475-1 495.
7 Tang Zhongli . Metallogenic Model and Geological Comparison of Jinchuan Ni-Cu-(Pt) Deposit [M].Beijing: Geological Publishing House,1995.
7 汤中立 . 金川铜镍硫化物{(含铂)}矿床成矿模式及地质对比[M]. 北京: 地质出版社, 1995.
8 Li Chusi , Xu Zhanghua , Waal S A D , et al . Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis [J]. Mineralium Deposita, 2004, 39(2): 159-172.
9 Lehmann J , Arndt N , Windley B , et al . Field relationships and geochemical constraints on the emplacement of the Jinchuan intrusion and its Ni-Cu-PGE sulfide deposit, Gansu, China [J]. Economic Geology, 2007, 102(1): 75-94.
10 Hu Peiqing , Zhang Mingjie , Li Chusi , et al . Noble gas isotopic constraints on the origin of fluids in the Jinchuan Ni-Cu sulfide deposit, Western China [J]. Geochmica et Cosmochimica Acta, 2008, 72(12): 481-493.
11 Zhang Mingjie , Kamo S K , Li Chusi , et al . Erratum to: Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China [J]. Mineralium Deposita, 2010, 45(2): 3-9.
12 Song Xieyan , Keays R R , Chen Liemeng , et al . Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China [J]. Mineralium Deposita, 2012, 47(3): 277-297.
13 Chen Liemeng , Song Xieyan , Keays R R , et al . Segregation and fractionation of magmatic Ni-Cu-PGE sulfides in the Western Jinchuan intrusion, northwestern China: Insights from platinum group element geochemistry [J]. Economic Geology, 2013, 108(8): 1 793-1 811.
14 Duan Jun , Chusi Li, Qian Zhuangzhi , et al . Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China [J]. Mineralium Deposita, 2016, 51(4): 557-574.
15 Yang Shenghong , Yang Gang , Qu Wenjun , et al . Pt-Os isotopic constraints on the age of hydrothermal overprinting on the Jinchuan Ni-Cu-PGE deposit, China [J]. Mineralium Deposita, 2017,(1): 1-18.
16 Waal S A D , Xu Zhanghua , Li Chusi ,et al . Emplacement of viscous mushes in the Jinchuan ultramafic intrusion, western China [J]. Canadian Mineralogist, 2004, 42(2): 371-392.
17 Chen Liemeng , Song Xieyan , Danyushevsky L V , et al . A laser ablation ICP-MS study of platinum-group and chalcophile elements in base metal sulfide minerals of the Jinchuan Ni-Cu sulfide deposit, NW China [J]. Ore Geology Reviews, 2015, 65(3): 955-967.
18 Mao Yajin , Barnes S J , Duan Jun , et al . Morphology and particle size distribution of olivines and sulphides in the Jinchuan Ni-Cu sulphide deposit: Evidence for sulphide percolation in a crystal mush [J]. Journal of Petrology, 2018, 59(9): 1 701-1 730.
19 Li Chusi , Ripley E M . The giant Jinchuan Ni-Cu-(PGE) deposit: Tectonic setting, magma evolution, ore genesis and exploration implications [J]. Economic Geology, 2011, 17(2): 163-180.
20 Jiao Jian'gang , Liu Huan , Duan Jun , et al . Hf isotope geochemical characteristics and magma sources in Jinchuan Cu-Ni sulfide deposite[J]. Journal of Earth Sciences and Environment, 2014, 36(1): 58-67.
20 焦建刚, 刘欢,段俊,等 .金川铜镍硫化物矿床Hf同位素地球化学特征与岩浆源区[J]. 地球科学与环境学报, 2014, 36(1): 58-67.
21 Chen Liemeng , Song Xieyan , Nie Xiaoyong , et al . Mineral chenistry and geological significance of pyroxene from segment Ⅱof the Jinchuan intrusion, Gansu Province[J]. Mineral Petrology, 2008, 28(1): 88-96.
21 陈列锰, 宋谢炎, 聂晓勇, 等 .甘肃金川Ⅱ号岩体辉石化学特征及其地质意义 [J]. 矿物岩石, 2008, 28(1): 88-96.
22 Li Xianhua , Su long , Sunlong Chung , et al . Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni‐Cu sulfide deposit: Associated with the ~825 Ma south China mantle plume?[J]. Geochemistry Geophysics Geosystems, 2005, 6(11): 1-16.
23 Song Xieyan , Zhou Meifu , ChristineYanWang, et al . Role of crustal contamination in formation of the Jinchuan intrusion and its world-class Ni-Cu-(PGE) sulfide deposit, Northwest China [J]. International Geology Review, 2006, 48(12): 1 113-1 132.
24 Tang Qingyan , Bao Jiao , Dong Yongxi , et al . Mg-Sr-Nd isotopic constraints on the genesis of the giant Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China [J]. Earth and Planetary Science Letters, 2018, 502: 221-230.
25 Li Shibin . Magmatic Evolution and the Formation of Ni-Cu Sulfide Ore Bodies in Segment Ⅱ of the Jinchuan Intrusion[D]. Beijing:University of Chinese Academy of Sciences,2008.
25 李士彬 . 甘肃金川II号岩体岩浆演化及铜镍硫化物成矿过程探讨[D]. 北京:中国科学院大学, 2008.
26 Chen Liemeng . Features and Genesis of Segment Ⅰand Its Hosted Ni-Cu Sulfide Deposits of the Jinchuan Intrusion, Gansu Province[D].Beijing:University of Chinese Academy of Sciences,2009.
26 陈列锰 . 甘肃金川Ⅰ号岩体及其铜镍硫化物矿床特征和成因 [D]. 北京:中国科学院大学, 2009.
27 Li C , Ripley E M , Maier W D , et al . Olivine and sulfur isotopic compositions of the Uitkomst Ni-Cu sulfide ore-bearing complex, South Africa: Evidence for sulfur contamination and multiple magma emplacements [J]. Chemical Geology, 2002, 188(3): 149-159.
28 Maier W D , Barnes S J , Sarkar A , et al . The Kabanga Ni sulfide deposit, Tanzania: I. Geology, petrography, silicate rock geochemistry, and sulfur and oxygen isotopes [J]. Mineralium Deposita, 2010, 45(5): 419-441.
29 Deng Yufeng , Song Xieyan , Zhou Taofa , et al . Correlations between Fo number and Ni content of olivine of the Huangshandong intrusion, eastern Tianshan, Xinjiang, and the genetic significances[J]. Acta Petrologica Sinica, 2012, 28(7): 280-290.
29 邓宇峰,宋谢炎,周涛发,等 . 新疆东天山黄山东岩体橄榄石成因意义探讨[J]. 岩石学报, 2012, 28(7): 280-290.
30 Li Chusi , Naldrett A J , Ripley E M . Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic/ultramafic intrusions: Principles, modeling, and examples from Voisey's Bay [J]. Earth Science Frontiers, 2007, 14(5): 177-183.
31 Sobolev A V , Hofmann A W , Sobolev S V , et al . An olivine-free mantle source of Hawaiian shield basalts [J]. Nature, 2005, 434(7 033): 590-597.
32 Sobolev A V , Hofmann A W , Kuzmin D V , et al . The amount of recycled crust in sources of mantle-derived melts [J]. Science, 2007, 316(5 823): 412-417.
33 Foley S F , O’Neill H S C . Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas [J]. Contributions to Mineralogy and Petrology, 2011, 162(1): 1-20.
34 Foley S F , Prelevic D , Rehfeldt T , et al . Minor and trace elements in olivines as probes into early igneous and mantle melting processes [J]. Earth and Planetary Science Letters, 2013, 363(2): 181-191.
35 Zhang Liuyi , Li Ni , Prelevic Dejan . The research status of olivine trace elements in-situ analysis and perspectives if its application[J]. Acta Petrologica Sinica, 2016, 32(6): 1 877-1 890.
35 张柳毅, 李霓, Prelevic Dejan . 橄榄石微量元素原位分析的现状及其应用[J]. 岩石学报, 2016, 32(6): 1 877-1 890.
36 Neave D A , Shorttle O , Oeser M , et al . Mantle-derived trace element variability in olivines and their melt inclusions [J]. Earth and Planetary Science Letters, 2018, 483: 90-104.
37 Zhang Ruigang , Gao Xue , Yang Liqiang . Indentification of magma mixing: A case study of the daocheng bathlith in the Yidun Arc[J]. Advance in Earth Science, 2018, 33(10): 1 058-1 074.
37 张瑞刚, 高雪, 杨立强 . 岩浆混合作用的识别: 以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1 058-1 074.
38 Spandler C , O’Neill H S C , Kamenetsky V S . Survival times of anomalous melt inclusions from element diffusion in olivine and chromite [J]. Nature, 2007, 447(7 142): 303-306.
39 Geological Survey of Gansu Province, Geological Sixth . Geology of the Baijiazuizi Cu-Ni Sulfide Deposit[M]. Beijing:Geoligical Publishing House, 1984.
39 甘肃省地质矿产局第六地质队 . 白家咀子硫化铜镍矿床地质[M]. 北京:地质出版社, 1984.
40 Song Xieyan , Keays R R , Zhou Meifu , et al . Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China [J]. Geochimica et Cosmochimica Acta, 2009, 73(2): 404-424.
41 Chen Liemeng , Song Xieyan , Danyushevsky L V , et al . Correlation between Ni and MgO contents of olivine in segment Ⅰ of the Jinchuan intrusion, NW China, and its geological implication [J]. Acta Petrologica Sinica, 2009, 25(12): 3 369-3 378.
41 陈列锰,宋谢炎, Danyushevsky L V ,等 . 金川Ⅰ号岩体橄榄石Ni-MgO相互关系及其地质意义[J]. 岩石学报, 2009, 25(12): 3 369-3 378.
42 Tonnelier N J . Geology and Genesis of the Jinchuan Ni-Cu-(PGE) Deposit, China [D]. Canada: Laurentian University,2010.
43 Bulle F , Layne G D . Trace element variations in olivine from the eastern Deeps intrusion at Voisey's Bay, Labrador, as a monitor of assimilation and sulfide saturation processes [J]. Economic Geology, 2015, 110(3): 713-731.
44 Bulle F , Layne G D . Multi-element variations in olivine as geochemical signatures of Ni-Cu sulfide mineralization in mafic magma systems—Examples from Voisey’s Bay and Pants Lake intrusions, Labrador, Canada [J]. Mineralium Deposita, 2016, 51(1): 49-69.
45 Howarth G H , Harris C . Discriminating between pyroxenite and peridotite sources for Continental Flood Basalts (CFB) in southern Africa using olivine chemistry [J]. Earth and Planetary Science Letters, 2017, 475: 143-151.
46 Shirey S B , Klewin K W , Berg J H , et al . Temporal changes in the sources of flood basalts: Isotopic and trace element evidence from the 1100 Ma old Keweenawan Mamainse Point Formation, Ontario, Canada [J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4 475-4 490.
47 Chen Liemeng , Song Xieyan , Danyushevsky L V , et al . Parental magma compositions of the Jinchuan intrusion,Gansu Province and MELTS thermodynamic modelling of fractional crystallization [J]. Acta Geologica Sinica, 2009, 83(9): 1 302- 1 315.
47 陈列锰,宋谢炎, Danyushevsky L V ,等 . 金川岩体母岩浆成分及其分离结晶过程的熔浆热力学模拟 [J]. 地质学报, 2009, 83(9): 1 302-1 315.
48 Ghiorso M S , Sack R O . Chemical mass transfer in magmatic processes IV: A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures [J]. Contributions to Mineralogy and Petrology, 1995, 119(2/3): 197-212.
49 Asimow P D , Ghiorso M S . Algorithmic modifications extending MELTS to calculate subsolidus phase relations [J]. American Mineralogist, 1998, 83(9/10): 1 127-1 132.
50 Rajamani V , Naldrett A J . Partitioning of Fe, Co, Ni, and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits [J]. Economic Geology, 1978, 73: 82-93.
51 Beattie P . Systematics and energetics of trace-element partitioning between olivine and silicate melts: Implications for the nature of mineral/melt partitioning [J]. Chemical Geology, 1994, 117(1/4): 57-71.
52 Horn I , Foley S F , Jackson S E , et al . Experimentally determined partitioning of high field strength-and selected transition elements between spinel and basaltic melt [J]. Chemical Geology, 1994, 117(1/4): 193-218.
53 Li Chusi , Ripley E M , Mathez E A . The effect of S on the partitioning of Ni between olivine and silicate melt in MORB [J]. Chemical Geology, 2003, 201(3): 295-306.
54 Righter K , Leeman W P , Hervig R L . Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition [J]. Chemical Geology, 2006, 227(1): 1-25.
55 Laubier M , Grove T L , Langmuir C H . Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions [J]. Earth and Planetary Science Letters, 2014, 392(5): 265-278.
56 Simkin T , Smith J V . Minor-element distribution in olivine [J]. Journal of Geology, 1970, 78(3): 304-325.
57 Li Shibin , Song Xieyan , Hu Ruizhong , et al .Magmatic evolution processes of SegmentⅡ in the Jinchuan Ore-bearing intrusion,Gansu Province[J].Geoscience, 2007, 23(10): 2 553- 2 560.
57 李士彬,宋谢炎,胡瑞忠,等 .甘肃金川Ⅱ号岩体岩相学特征及分离结晶过程探讨[J]. 岩石学报, 2007, 23(10): 2 553-2 560.
58 Righter K , Leeman W P , Hervig R L . Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition [J]. Chemical Geology, 2006, 227(1): 1-25.
59 Canil D . Vanadium in peridotites, mantle redox and tectonic environments: Archean to present [J]. Earth and Planetary Science Letters, 2002, 195(1): 75-90.
60 Papike J J , Karner J M , Shearer C K . Comparative planetary mineralogy: Valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts [J]. American Mineralogist, 2005, 90(2/3): 277-290.
61 Shearer C K , Mckay G , Papike J J , et al . Valence state partitioning of vanadium between olivine-liquid: Estimates of the oxygen fugacity of Y980459 and application to other olivine-phyric martian basalts [J]. American Mineralogist, 2006, 91(10): 1 657-1 663.
62 Barnes S J , Godel B , Gürer D , et al . Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni rich magmatic sulfides [J]. Economic Geology, 2013, 108(8): 1 971-1 992.
63 Li Chusi , Zhang Zhengwei , Li Wenyuan , et al . Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai-Tibet plateau, western China [J]. Lithos, 2015, 216/217(2): 224-240.
64 Barnes S J , Tang Zhongli . Chrome spinels from the Jinchuan Ni-Cu sulfide deposit, Gansu Province, People's Republic of China [J]. Economic Geology, 1999, 94(3): 343-356.
65 Barnes S J , Kunilov V Y . Spinels and Mg ilmenites from the Noril’sk 1 and Talnakh intrusions and ither mafic rocks of the Siberian flood basalt province [J]. Economic Geology, 2000, 95(8): 1 701-1 717.
66 Huang Ke , Zhu Mingtian , Zhang Lianchang , et al .LA-ICP-MS analysis of magnetite and application in genesis of mineral deposit [J]. Advances in Earth Science, 2017, 32(3): 262-275.
66 黄柯, 朱明天, 张连昌, 等 . 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用 [J]. 地球科学进展, 2017, 32(3): 262-275.
67 Rajamani V . Partition of Fe, Co, Ni and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits [J]. Economic Geology, 1978, 73(6): 1 520-1 528.
68 Laubier M , Grove T L , Langmuir C H . Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: An experimental and laser ICP-MS study with application to the oxidation state of mantle source regions [J]. Earth and Planetary Science Letters, 2014, 392(5): 265-278.
69 Li Chusi , Naldrett A J . Geology and petrology of the Voisey's Bay intrusion: Reaction of olivine with sulfide and silicate liquids [J]. Lithos, 1999, 47(1): 1-31.
70 Mao Yajin , Qin Kezhang , Barnes S J , et al . A revised oxygen barometry in sulfide-saturated magmas and application to the Permian magmatic Ni-Cu deposits in the southern Central Asian Orogenic Belt [J]. Mineralium Deposita, 2018, 53(6): 731-755.
71 Xue Shengchao , Qin Kezhang , Tang Dongmei , et al . Olivine and Cr-spinel constraints on the petrogenesis, mineralization and source characteristics of nickel-mineralized Poshi intrusion, NE Tarim [J]. Chinese Journal of Geology, 2016, 51(4): 1 181-1 203.
71 薛胜超, 秦克章, 唐冬梅,等 . 塔里木东北缘坡十Ni矿化侵入体中橄榄石和铬尖晶石对成岩成矿及源区特征的约束 [J]. 地质科学, 2016, 51(4): 1 181-1 203.
72 Xie Wei , Song Xieyan , Deng Yufeng , et al . Geology and olivine geochenistry of the Heishan Ni-Cu-(PGE) sulfide deposit, Gansu, NW China [J]. Acta Petrologica Sinica, 2013, 29(10): 3 487-3 502.
72 颉炜, 宋谢炎, 邓宇峰,等 .甘肃黑山铜镍硫化物含矿岩体的地质特征及橄榄石成因探讨 [J]. 岩石学报, 2013, 29(10): 3 487-3 502.
73 Deng Yufeng , Song Xieyan , Hollings P , et al . Lithological and geochemical constraints on the magma conduit systems of the Huangshan Ni-Cu sulfide deposit, NW China [J]. Mineralium Deposita, 2016, 52(6): 1-18.
74 Matzen A K , Wood B J , Baker M B , et al . The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts [J]. Nature Geoscience, 2017, 10(7): 32-45.
75 Sobolev A V , Krivolutskaya N A , Kuzmin D V . Petrology of the parental melts and mantle sources of Siberian trap magmatism [J]. Petrology, 2009, 17(3): 253-286.
76 Jin Shengkai , Zhang Zhaochong , Cheng Zhuiguo , et al . Compositions of olivine from the Wajilitag mafic-ultramafic intrusion of the Permian Tarim Large Igneous Province, NW China: Insights into recycled pyroxenite in a peridotite mantle source [J]. Journal of Asian Earth Sciences, 2019, 171: 9-19.
77 Heinonen J S , Fusswinkel T . High Ni and low Mn/Fe in olivine phenocrysts of the Karoo meimechites do not reflect pyroxenitic mantle sources [J]. Chemical Geology, 2017, 467: 131-142.
78 Condie K C . Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales [J]. Chemical Geology, 1993, 104(1/4): 1-37.
[1] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[2] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[3] 杨志军, 黄珊珊, 陈耀明, 李晓潇, 曾璇, 周文秀. 金伯利岩演化过程及金刚石含矿性评价的研究进展[J]. 地球科学进展, 2016, 31(7): 700-707.
[4] 黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义[J]. 地球科学进展, 2015, 30(9): 1063-1073.
[5] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[6] 黄建国,李虎杰,李文杰,董 磊. 贵州戈塘金矿萤石微量元素特征及钐—钕测年[J]. 地球科学进展, 2012, 27(10): 1087-1093.
[7] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[8] 胡耀武,Michael P.Richards,刘武,王昌燧. 骨化学分析在古人类食物结构演化研究中的应用[J]. 地球科学进展, 2008, 23(3): 228-235.
[9] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
[10] 王将克;邹和平;郑卓. 农业生物地球化学———新兴的边缘学科[J]. 地球科学进展, 2004, 19(5): 852-859.
[11] 陈晋阳;郑海飞;曾贻善. 微量元素在幔源矿物与热液之间分配系数的研究进展[J]. 地球科学进展, 2004, 19(2): 224-229.
[12] 刘大锰,刘志华,李运勇. 煤中有害物质及其对环境的影响研究进展[J]. 地球科学进展, 2002, 17(6): 840-847.
[13] 陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3): 402-410.
[14] 刘桂建,彭子成,王桂梁,杨萍月,Chou Chenglin. 煤中微量元素研究进展[J]. 地球科学进展, 2002, 17(1): 53-62.
[15] 唐红峰,刘丛强. 变质流体作用的元素地球化学研究[J]. 地球科学进展, 2001, 16(4): 508-513.