地球科学进展 ›› 2016, Vol. 31 ›› Issue (1): 66 -77.

上一篇    下一篇

弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比
杨婧 1( ), 王金荣 1, *( ), 张旗 2, 陈万峰 1, 潘振杰 1, 焦守涛 2, 王淑华 1   
  1. 1. 兰州大学地质科学与矿产资源学院 甘肃省西部矿产资源重点实验室(兰州大学),甘肃 兰州 730000
    2. 中国科学院地质与地球物理研究所, 北京 100029
  • 出版日期:2016-01-20
  • 通讯作者: 王金荣 E-mail:yangjing14@lzu.edu.cn;jrwang@lzu.edu.cn

Back-arc Basin Basalt(BABB)Data Mining: Comparison with MORB and IAB

Jing Yang 1( ), Jinrong Wang 1, *( ), Qi Zhang 2, Wanfeng Chen 1, Zhenjie Pan 1, Shoutao Jiao 2, Shuhua Wang 1   

  1. 1.Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou 730000, China
    2. Institute if Geology and Geophysice, China Academy of Sciences, Beijing 100029, China
  • Online:2016-01-20 Published:2016-01-10
  • Contact: Jinrong Wang E-mail:yangjing14@lzu.edu.cn;jrwang@lzu.edu.cn
  • About author:

    First author: Yang Jing(1991-),female, Jinchang City, Gansu Province,Master graduate student. Research areas indude lithospheric evolution and mineralization. E-mail: yangjing14@lzu.edu.cn

    Corresponding author: Wang Jinrong(1958-),male, Putian City, Fujian Province, Professor. Research areas include petro-tectonic. E-mail: jrwang@lzu.edu.cn

  • Supported by:
    Foundation item: Project supported by the Science Technology of Gansu Province "the West Section of Qilian Orogenic Belt Shibandun iron deposit ore-occurred strata and prospecting prediction research"(No.1002FKDA042);The Fundamental Research Funds for the Central Universities "Magma series and Tectonic significance at Yema Nanshan in the Western Section of the MidQilian"(No.lzujbky-2013-113)

弧后盆地玄武岩(BABB)全球分布有限,与板块俯冲有关,位于岛弧外侧,规模小,寿命短,现代BABB主要分布于西太平洋.通常认为,BABB地球化学成分变化较大,包括正常洋中脊玄武岩(N-MORB),富集洋中脊玄武岩(E-MORB),岛弧玄武岩(IAB)及少量洋岛玄武岩(OIB)组分.在玄武岩构造判别图中,BABB大多在洋中脊玄武岩(MORB)范围内,说明BABB类似MORB.新的全球MORB数据研究表明,MORB包含了从MORB到OIB及IAB的组分,而BABB相对于MORB更富集Cs,Rb,U,Ba,Th和Pb等不相容元素,有明显的NbTa负异常,表明BABB兼具MORB和IAB的地球化学特征,是俯冲流体及沉积物参与其岩浆作用过程所致,大多是在湿的条件下部分熔融形成的.弧后盆地可分为初始弧后盆地和成熟弧后盆地,前者玄武岩具有明显的岛弧玄武岩的地球化学特征,而后者玄武岩更接近MORB的特征.

Back-Arc Basin Basalts(BABB) distribute narrowly in the world. Currently, BABB are mainly distribute in the western Pacific Ocean outside the island arc in small scales and short lifespan which are related with subduction. It is generally considered that geochemical compositions of BABB vary in a large scale, including N-MORB, E-MORB, IAB, and a small amount of OIB. In most of basalt discrimination diagrams, BABB mainly fall into MORB area, suggested that BABB are similar to MORB. New data of MORB shows that MORB contain a series of constituents from MORB to OIB, also IAB, while BABB are mainly composed by MORB and IAB, rarely show OIB components. BABB is generally analogous with MORB whereas the former is enriched in Cs, Rb, U, Ba, Th, Pb, and other incompatible elements, exhibits an obvious Nb-Ta negative abnormal, suggesting that BABB is featured with both geochemical characteristics of MORB and IAB, with subuduction sediments partition during its magmatism process. It is mainly formed by partial melting in wet environment. Back-arc basins are divided into two groups: mature ones and immature ones. Primary back-arc basins share some geochemical characteristics of island arcs while mature back-arc basins exhibit few IAB features and is closer to MORB.

中图分类号: 

图1 全球BABB样品分布图 [ 7 ]
Fig. 1 Distribution of the global BABB samples [ 7 ]
图2 TiO2-MnO-P2O5判别图 [ 9 ](灰色方块据参考文献 [ 8 ]修改)
Fig. 2 Discrimination diagram of TiO 2-MnO-P 2O 5 [ 9 ](The grey cubes modified after reference [ 8 ])
图3 FeO T-MgO-Al 2O 3[ 10 ]
Fig. 3 Discrimination diagram of FeO T-MgO-Al 2O 3 [ 10 ]
图4 FeO*/MgO-TiO 2[ 11 ]
Fig. 4 Discrimination diagram of FeO*/MgO-TiO 2 [ 11 ]
图5 Ti-Zr图 [ 12 , 13 ]
Fig.5 Discrimination diagram of Ti-Zr [ 12 , 13 ]
Fig. 6 Discrimination diagram of Ti-Zr-Y和Ti-Zr-Sr [ 12 ]
图7 Ti/Y-Nb/Y图 [ 4 , 13 , 15 ]
Fig.7 Discrimination diagram of Ti/Y-Nb/Y [ 4 , 13 , 15 ]
图8 Cr-Y图 [ 13 , 15 ]
Fig.8 Discrimination diagram of Cr-Y [ 13 , 15 ]
图9 Hf-Th-Nb(Ta)图 [ 16 ]
Fig.9 Discrimination diagram of Hf-Th-Nb(Ta) [ 16 ]
图10 Zr/Y-Zr图 [ 17 ]
Fig.10 Discrimination diagram of Zr/Y-Zr [ 17 ]
图11 Nb-Zr-Y图 [ 20 ]
Fig.11 Discrimination diagram of Nb-Zr-Y [ 20 ]
图12 Th/Yb-Ta/Yb图 [ 13 ]
Fig.12 Discrimination diagram of Th/Yb-Ta/Yb [ 13 ]
图13 Y-La-Nb图 [ 21 ]
Fig.13 Discrimination diagram of Y-La-Nb [ 21 ]
图14 V-Ti图 [ 22 ]
Fig.14 Discrimination diagram of V-Ti [ 22 ]
图15 Ni-Y图 [ 24 ]
Fig.15 Discrimination diagram of Ni-Y [ 24 ]
图16 BABB,N- 和E-MORB微量元素蛛网图和稀土配分图
N-,E-MORB数据来自于参考文献[8],标准化数据据来自于参考文献 [ 37 ]
Fig.16 BABB, N-MORB and E-MORB primitive mantle-normalized trace element patterns and chondrite-normalized REE patterms
The content of N- and E-MORB from reference[8],normalization values from reference [ 37 ]
表1 BABB和N-MORB,E-MORB样品主量,微量,稀土元素含量表
Table 1 Major, trace and rare earth element contents table of BABB, N-MORB and E-MORB
BABB N-MORB E-MORB
元素 数据 平均值 中位数 数据 平均值 中位数 数据 平均值 中位数
SiO2 3414 50.80 50.67 3965 50.30 50.33 1388 50.04 50.20
TiO2 3387 1.26 1.23 4234 1.47 1.45 1430 1.56 1.49
Al2O3 3331 15.83 15.91 3963 14.85 14.85 1387 15.18 15.10
FeOT 3659 9.36 9.18 4107 10.12 10.03 1412 9.59 9.51
MnO 2751 0.17 0.17 3469 0.18 0.18 1240 0.17 0.17
MgO 3398 6.75 6.89 3982 7.60 7.61 1391 7.44 7.53
CaO 3331 11.32 11.45 3963 11.48 11.55 1387 11.24 11.23
Na2O 3494 2.68 2.69 3977 2.65 2.66 1390 2.61 2.62
K2O 3458 0.27 0.23 3986 0.11 0.11 1428 0.37 0.31
P2O5 3271 0.14 0.14 3762 0.14 0.14 1328 0.21 0.19
Total 98.59 98.56 98.92 98.91 98.41 98.35
Cs 1065 0.19 0.14 2641 0.02 0.02 959 0.10 0.08
Rb 2763 6.02 4.88 3956 1.33 1.02 1511 7.52 6.26
Ba 2772 61.91 46.40 4004 13.63 11.00 1548 86.69 70.00
Th 1640 0.59 0.41 3689 0.18 0.16 1379 0.95 0.77
U 1273 0.21 0.16 3422 0.07 0.06 1307 0.28 0.22
Nb 2300 2.38 1.73 4035 2.86 2.56 1493 13.03 10.26
Ta 1058 0.16 0.11 3425 0.19 0.18 1305 0.85 0.65
Pb 2763 6.02 4.88 3198 0.43 0.43 1278 0.88 0.79
Mo 252 0.68 0.50 725 0.40 0.38 401 0.88 0.71
Sr 3120 192.00 174.00 3827 111.86 109.00 1494 186.91 167.00
Zr 2423 77.02 75.00 3614 88.57 88.00 1438 111.95 105.60
Hf 1384 2.02 1.95 3903 2.38 2.37 1372 2.88 2.67
Li 478 6.21 6.00 1225 5.54 5.66 517 5.23 5.18
Y 2419 25.82 25.90 3778 32.25 31.80 1484 27.88 27.40
La 2099 5.01 4.10 5768 3.42 3.34 2093 9.41 7.87
Ce 2160 12.61 11.30 5402 10.36 10.24 1967 21.81 18.88
Pr 1143 2.02 1.87 4098 1.74 1.75 1340 2.97 2.63
Nd 1845 10.01 9.65 5331 9.48 9.49 1963 13.68 12.75
Sm 1823 3.00 2.92 5768 3.32 3.30 2093 3.84 3.63
Eu 1778 1.09 1.09 5547 1.21 1.20 2021 1.35 1.30
Gd 1361 3.75 3.65 4688 4.49 4.44 1671 4.51 4.35
Tb 1340 0.66 0.64 4803 0.83 0.80 1687 0.80 0.78
Dy 1446 4.32 4.25 4746 5.41 5.29 1684 4.90 4.81
Ho 1184 0.92 0.90 4283 1.18 1.15 1385 1.03 1.00
Er 1463 2.69 2.63 4585 3.38 3.30 1616 2.86 2.82
Tm 892 0.39 0.38 2687 0.49 0.48 1004 0.42 0.41
Yb 1757 2.58 2.50 5561 3.28 3.20 2034 2.73 2.69
Lu 1353 0.41 0.39 5022 0.50 0.49 1709 0.40 0.40
143Nd/144Nd 826 0.513040 0.513052 1154 0.513105 0.513111 595 0.513018 0.513023
87Sr/86Sr 971 0.703288 0.703216 1251 0.702721 0.702700 634 0.703108 0.703060
206Pb/204Pb 590 18.4787 18.5015 1120 18.31704 18.3036 568 18.87138 18.8700
207Pb/204Pb 590 15.5320 15.5330 1096 15.4920 15.4900 562 15.552657 15.5550
208Pb/204Pb 590 38.2210 38.1935 1095 37.9083 37.8690 562 38.5771 38.5730
图 17 Sr-Nd-Pb同位素图 [ 19 , 38 ]
Fig.17 Discrimination diagram of Sr-Nd-Pb isotope [ 19 , 38 ]
[1] Hawkins J W,Lonsdale P F,Macdougall J D,et al.Petrology of the axial ridge of the Mariana Trough backarc spreading center[J]. Earth and Planetary Science Letters,1990,100(1):226-250.
[2] Gribble R F,Stern R J,Newman S,et al.Chemical and isotopic composition of lavas from the northern Mariana Trough:Implications for magmagenesis in back-arc basins[J]. Journal of Petrology,1998,39(1):125-154.
[3] Klein E M,Langmuir C H.Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness[J]. Journal of Geophysical Research,1987,92(8):8 089-8 115.
[4] Pearce J A,Lippard S J,Roberts S.Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society,London,Special Publications,1984,16(1):77-94.
[5] Xie Rong,Liu Yawen,Li Xiangxiang.Key technologies of Earth observation satellite data integration system under big data environment[J]. Advances in Earth Science,2015,30(8):855-862.
[谢榕,刘亚文,李翔翔.大数据环境下卫星对地观测数据集成系统的关键技术[J].地球科学进展,2015,30(8):855-862.]
[6] Yu Xing. The big data tool for geochemical study of seabed rocks--PetDB and its application in geoscience[6]Yu Xing. The big data tool for geochemical study of seabed rocks--PetDB and its application in geoscience[J]. Advances in Earth Science,2014,29(2):306-314.
[余星. 海底岩石地球化学研究中的 "大数据"----PetDB 及其应用[J].地球科学进展,2014,29(2):306-314.]
[7] Lehnert K.The PetDB data collection:Impact on science[C]∥2007 GSA Denver Annual Meeting Abstracts. Colorado:Colorado Convention Center ,2007.
[8] Wang Jinrong, Chen Wanfeng, Zhang Qi, et al. Preliminary research on data mining of N-MORB and E-MORB--Discussion on method of the basalt discrimination diagrams and the character of MORB's mantle source[J].Acta Petrological Sinica,2016,in press.
[王金荣,陈万峰,张旗,等. N-MORB和E-MORB数据挖掘----玄武岩判别图及洋中脊玄武岩源区地幔性质的讨论[J].岩石学报,2016,待刊.]
[9] Mullen E D.MnO/TiO2/P2O5:A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters,1983,62(1):53-62.
[10] Pearce T H,Gorman B E,Birkett T C.The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks[J]. Earth and Planetary Science Letters,1977,36(1):121-132.
[11] Glassley W.Geochemistry and tectonics of the Crescent volcanic rocks,Olympic Peninsula,Washington[J]. Geological Society of America Bulletin,1974,85(5):785-794.
[12] Pearce J A,Cann J R.Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters,1973,19(2):290-300.
[13] Pearce J A.Trace element characteristics of lavas from destructive plate boundaries[M]∥Thorpe R S, ed. Orogenic Andesites and Related Rocks, Chichester. England: John Wiely and Sons,1982:525-548.
[14] Pearce J A. Supra-subduction zone ophiolites:The search for modern analogues[J]. Special Papers-Geological Society of America,2003,513:269-294.
[15] Wang Renmin,He Gaopin,Chen Zhenzhen,et al.Graphic method for protolith metamorphic rocks[M]. Beijing:Geological Publishing House,1987.
[王仁民,贺高品,陈珍珍,等.变质岩原岩图解判别法[M].北京:地质出版社,1987.]
[16] Wood D A.The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters,1980,50(1):11-30.
[17] Pearce J A,Norry M J.Petrogenetic implications of Ti,Zr,Y,and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology,1979,69(1):33-47.
[18] Pearce J A.Role of the subcontinental lithosphere in magma genesis at active continental margins[C]∥Hawkesworth C J,Norry M J, eds.Continental Basalts and Mantle Xenoliths. Nantwich:Shiva Publishing,1983:230-249.
[19] Rollison H,Rollinson H R.Using Geochemical Data: Evaluation,Presentation,Interpretation[M]. London:Routledge,2014.
[20] Meschede M.A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology,1986,56(3):207-218.
[21] Cabanis B.Le diagramme La/10-Y/15-Nb/8:Un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale[J]. Comptes Rendus de I'Académie des Sciences(Série 2),1989,309:2 023-2 029.
[22] Shervais J W.Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters,1982,59(1):101-118.
[23] Crawford A J,Keays R R.Cambrian greenstone belts in Victoria:Marginal sea-crust slices in the Lachlan Fold Belt of southeastern Australia[J]. Earth and Planetary Science Letters,1978,41(2):197-208.
[24] Capedri S,Venturelli G,Bocchi G,et al.The geochemistry and petrogenesis of an ophiolitic sequence from Pindos,Greece[J]. Contributions to Mineralogy and Petrology,1980,74(2):189-200.
[25] Danyushevsky L V,Falloon T J,Sobolev A V,et al.The H2O content of basalt glasses from Southwest Pacific back-arc basins[J]. Earth and Planetary Science Letters,1993,117(3):347-362.
[26] Garcia M O,Liu N W K,Muenow D W. Volatiles in submarine volcanic rocks from the Mariana Island arc and trough[J]. Geochimica et Cosmochimica Acta,1979,43(3):305-312.
[27] Gill J B.Composition and age of Lau Basin and Ridge volcanic rocks:Implications for evolution of an interarc basin and remnant arc[J]. Geological Society of America Bulletin,1976,87(10):1 384-1 395.
[28] Muenow D W,Liu N W K,Garcia M O,et al. Volatiles in submarine volcanic rocks from the spreading axis of the East Scotia Sea back-arc basin[J]. Earth and Planetary Science Letters,1980,47(2):272-278.
[29] Pearce J A,Ernewein M,Bloomer S H,et al.Geochemistry of Lau Basin volcanic rocks:Influence of ridge segmentation and arc proximity[J]. Geological Society,London,Special Publications,1994,81(1):53-75.
[30] Gill J.Orogenic Andesites and Plate Tectonics[M]. Berlin: Springer Science & Business Media ,2012.
[31] Stolper E,Newman S.The role of water in the petrogenesis of Mariana trough magmas[J]. Earth and Planetary Science Letters,1994,121(3):293-325.
[32] Hirschmann M M,Asimow P D,Ghiorso M S,et al.Calculation of peridotite partial melting from thermodynamic models of minerals and melts.III.Controls on isobaric melt production and the effect of water on melt production[J]. Journal of Petrology,1999,40(5):831-851.
[33] Gaetani G A,Grove T L.Experimental constraints on melt generation in the mantle wedge[J]. Inside the Subduction Factory,2013,doi:10.1029/138GM07.
[34] Kelley K A,Plank T,Grove T L,et al.Mantle melting as a function of water content beneath back-arc basins[J]. Journal of Geophysical Research:Solid Earth (1978-2012),2006,111(B9),doi:10.1029/2005JB003732.
[35] Pearce J A,Stern R J.Origin of back-arc basin magmas:Trace element and isotope perspectives[J]. Geophysical Monograph-American Geophysical Union,2006,166(1):63-86.
[36] Langmuir C H,Bezos A,Escrig S,et al.Chemical systematics and hydrous melting of the mantle in back-arc basins[J]. Geophysical Monograph-American Geophysical Union,2006,166:87-146.
[37] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society,London,Special Publications,1989,42(1):313-345.
[38] Zindler A,Hart S R.Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences,1986,14:493-571.
[1] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[2] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
[3] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[4] 侯荣娜, 王淑华, 张翔, 侯克选, 张铖, 王金荣. 中祁连西段花岗岩类的地球化学特征及构造意义[J]. 地球科学进展, 2015, 30(9): 1034-1049.
[5] 陆志翔, 肖洪浪, 邹松兵, 任娟, 张志强. 黑河流域近两千年人—水—生态演变研究进展[J]. 地球科学进展, 2015, 30(3): 396-406.
[6] 方维萱, 李建旭. 智利铁氧化物铜金型矿床成矿规律、控制因素与成矿演化[J]. 地球科学进展, 2014, 29(9): 1011-1024.
[7] 夏阳,张立飞. 中源地震脱水脆变机制的岩石学研究进展[J]. 地球科学进展, 2013, 28(9): 997-1006.
[8] 何彬彬,崔莹,陈翠华,陈建华. 基于地质空间数据挖掘的区域成矿预测方法[J]. 地球科学进展, 2011, 26(6): 615-623.
[9] 孙嘉,裴韬,龚玺,周成虎. Web时空数据挖掘研究进展[J]. 地球科学进展, 2011, 26(4): 449-459.
[10] 朱俊江. 哥斯达黎加地震起源计划——IODP 334航次介绍[J]. 地球科学进展, 2011, 26(12): 1300-1305.
[11] 王永锋;金振民;. 地震波各向异性:窥测地球深部构造的“探针”[J]. 地球科学进展, 2005, 20(9): 946-953.
[12] 王利;周祖翼. 发震带试验(SEIZE)[J]. 地球科学进展, 2005, 20(8): 823-832.
[13] 杨永亮. 10 Be在大洋边缘海洋学中的应用及模型[J]. 地球科学进展, 2002, 17(3): 355-362.
[14] 金性春. 大洋钻探与西太平洋构造[J]. 地球科学进展, 1995, 10(3): 234-239.
[15] 张魁武,张旗,李达周. 阿拉斯加里镁铁—超镁铁杂岩的研究历史和现状[J]. 地球科学进展, 1990, 5(6): 48-51.
阅读次数
全文


摘要