地球科学进展 ›› 2015, Vol. 30 ›› Issue (9): 1063 -1073. doi: 10.11867/j.issn.1001-8166.2015.09.1063

上一篇    

拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义
黄从俊( ), 李泽琴( )   
  1. 成都理工大学地球科学学院,四川 成都 610059
  • 收稿日期:2015-05-21 修回日期:2015-08-13 出版日期:2015-09-20
  • 基金资助:
    国家自然科学基金项目“康滇地轴元古代变质热液IOCG矿床——拉拉Fe-Oxide-Cu-Au-Mo-REE矿床研究”(编号:41072065);教育部博士点基金项目“康滇地轴元古界拉拉铁氧化物—铜—金—钼—稀土矿床”(编号:2011-225)资助

Trace Elements Geochemistry of Fluorite and Its Implications in the Lala IOCG Deposit

Congjun Huang( ), Zeqin Li( )   

  1. School of Earth Science, Chengdu University of Technology,Chengdu,610059,China
  • Received:2015-05-21 Revised:2015-08-13 Online:2015-09-20 Published:2015-09-20

康滇地区元古宙拉拉IOCG矿床中有与铜、钼矿化密切相关的萤石产出,其中,变质期有萤石(I)和萤石(II)2个世代萤石产出,前者与鳞片状辉钼矿共生,后者与条带状辉钼矿共生;热液期萤石(III)呈脉状穿插含变质期萤石的矿石;萤石的微量元素记录了成矿流体来源方面的重要信息。通过ICP-MS方法分析矿床中2期萤石样品的微量元素组成,运用微量元素含量、比值及蛛网图探讨微量元素特征、成矿流体来源及性质。结果表明:变质期萤石中各微量元素含量有一定的变化范围,热液期中各微量元素含量比较稳定,元素在萤石中的含量主要由元素在原始流体中的含量及元素本身性质所决定。结论认为:①变质期萤石(I)和萤石(II)为同源流体不同阶段演化产物,成矿流体来自于围岩,为具有高F-,Cu,Mo和Y含量的低pH值海水相流体,活动范围有限,没有发生大规模流动或迁移;②热液期萤石(III)与变质期萤石不同源,成矿流体由大气降水或地下水渗透淋滤围岩形成,为具有低F-含量的高pH值大陆淡水相流体,可能发生较远距离的渗入性流体流动或迁移。

The Lala Fe-Cu-REE deposit, reported as a typical IOCG deposit in the Kangdian region, is located at the western margin of Yangtze Block. Fluorite is one of the most important gangue minerals in the Lala IOCG deposit, which is intergrown with chalcopyrite and molybdnite, and recorded important information about the source and evolution of the ore-forming fluid. Trace elements geochemistry of fluorite and its implications for source of ore-forming fluid are discussed through content, ratio and spider diagram of trace elements. Two stages of fluorite with three generations are identified in the Lala IOCG deposit. Fluorite (I) and fluorite (II) belongs to metamorphic metallization stage. Fluorite (I) is intergrown with flaky molybdenite (I), and are isolated cube shaped. Fluorite (II) is intergrown with banded molybdenite (II) in the vein or massive-disseminated ores, light purple. Fluorite (III) belongs to hydrothermal mineralization stage, intergrown with chalcopyrite and calcite veins, which cut the ores with fluorite (I) and fluorite (II), with a cubic habit. It turned out that: the content of trace elements is variable in fluorite (I) and fluorite (II) while it is stable in fluorite (III), which is dominated by its content in the original fluid and the nature themselves. The results suggested that: ①Fluorite (I) and fluorite (II) are homogenous products at different generations, seawater phase ore-forming fluids derived from the host rock, characterized by high content of F , Cu, Mo, Y and low pH, and exhumation might migrated at small scale.②Fluorite (III) has a different source from fluorite (I) and fluorite (II). Infiltration and leaching host rock by meteoric water or groundwater formed its freshwater phase ore-forming fluids, which is characterized by high pH and low content of F-, and exhumation might infiltration flew or migrated at a long distance.

中图分类号: 

图1. 拉拉IOCG矿床矿区地质简图 (据文献文献[ 17 ]修改)
Fig 1. Simplified geological map of the Lala IOCG deposit (modified after reference[ 17 ])
图2 拉拉IOCG矿床中萤石的代表性手标本及显微照片 (a)孤立状紫色萤石(I)分布于黑云母片岩型矿石中 (LO-6);(b)萤石(II)与辉钼矿(II)和黄铜矿组成的脉体平行石榴石黑云母片岩的片理产出(L-26);(c)方解石+萤石(III)脉(LD-7-2)切割浸染状—块状的含萤石(II)和辉钼矿(II)的黑云母片岩型矿石(LD-7-1);(d)黄铜矿围绕萤石(I)和鳞片状辉钼矿(I)生长(LO-6,反射光);(e)和(f)为同一视域(前者为反射光,后者为透射单偏光),条带状辉钼矿(II)与萤石(II)共生(L-26),萤石交代黑云母形成交代残余结构; Fl:萤石;Ccp:黄铜矿;Mo:辉钼矿;Cal:方解石;Bi:黑云母;Grt:石榴石;Foliation:片理。
Fig.2 Representative ore samples and photomicrographs of fluorite from the Lala IOCG deposit (a)Individual fluorite(I) in biotite-schist ore(LO-6); (b)The vein comprised of fluorite(II), molybdenite(II) and chalcopyrite parallel to the foliation of the garnet-biotite schist(L-26); (c) dismissive-massive biotite-schist ore (LD-7-1)cross cut by the vein of fluorite(III) and calcite(LD-7-2); (d)fluorite(I) and flaky molybdenite(I) surrounded by chalcopyrite (LO-6, Reflected light); (e) and (f) are the same place of the thin section, showing the banded molybdenite(II) intergown with fluorite(II) and the biotite(II) was altered by fluorite(II) (L-26, e is Reflected light, and f is plane-polarized light); Fl: fluorite; Ccp: chalcopyrite; Mo: molybdnite; Cal: calcite; Bi: biotite; Grt: garnet
表1 拉拉IOCG 矿床矿物生成顺序表
Table 1 Paragenetic sequence of mineralization and alteration in the Lala IOCG deposit
表2 拉拉IOCG矿床中萤石的微量元素组成/10 -6及特征参数
Table 2 Trace elements composition and parameters of the fluorite and host rocks from the Lala IOCG deposit
期次 变质成矿期 热液期 围岩
世代 萤石Ⅰ 萤石Ⅱ 萤石Ⅲ 黑云母片岩 钠长石变粒岩
样号 LO-88-2 LO-6 LO-85 LO-74 LO-20 LD-7-2 L-25 OP-77 LD-7-1 LO-38-2 Op-79 LO-36 Op-12
Li 0.570 0.453 0.259 0.311 0.532 0.251 1.021 0.937 0.839
Be 0.000 0.086 0.274 0.180 0.078 0.092 0.039 0.180 0.000
Sc 1.411 1.793 1.333 1.292 1.258 0.904 1.163 0.709 0.764
Ti 13.146 14.325 13.864 11.236 12.428 12.734 11.603 1.642 1.568 3718.00 5988.00 2894.00 4839.00
V 0.608 1.427 1.493 0.786 0.978 0.233 4.943 0.542 0.311
Cr 23.626 4.318 31.650 21.784 6.278 5.256 11.817 21.619 19.562
Co 11.947 6.976 13.603 21.682 3.348 5.541 26.336 2.703 2.674
Ni 18.712 20.266 18.091 19.379 18.708 20.406 24.454 30.870 30.658
Zn 17.035 6.629 15.525 8.616 6.286 13.439 12.382 8.281 9.028
Ga 13.328 11.290 7.035 7.073 5.819 7.347 3.809 0.293 0.315
Rb 0.423 1.020 1.340 0.655 1.409 0.359 0.787 0.667 0.735 64.00 95.00 8.00 5.00
Sr 149.724 129.471 122.022 108.025 103.400 83.395 160.962 18.735 18.638 64.00 100.00 79.00 52.00
Y 217.075 457.011 526.499 758.773 981.544 710.753 450.785 112.695 112.869 216.00 138.00 200.00 204.00
Zr 1.170 1.573 1.768 1.012 1.356 0.972 2.238 0.921 0.975 297.00 432.00 116.00 389.00
Nb 2.801 6.626 2.999 8.476 2.224 1.381 3.027 0.624 0.736 113.00 62.00 45.00 51.00
Cs 0.014 0.021 0.016 0.015 0.027 0.035 0.020 0.081 0.101
Ba 6.289 13.739 3.920 6.490 7.342 10.242 4.783 29.785 31.896 347.00 199.00 45.00 41.00
Hf 0.307 0.549 0.400 0.407 0.616 0.455 0.394 0.031 0.056 7.90 10.30 3.20 9.70
Ta 0.113 0.390 0.179 0.198 0.224 0.184 0.201 0.092 0.331 3.00 2.60 1.30 2.20
Pb 22.910 9.198 8.555 13.013 6.335 1.499 28.149 1.151 1.492
Th 0.159 0.597 0.205 0.149 0.189 0.156 4.408 0.089 0.118 14.90 12.80 11.90 12.00
U 45.001 18.559 17.793 20.079 13.448 2.492 51.449 0.614 0.686 174.90 68.10 79.50 37.20
Ge 1.727 1.835 0.942 1.100 0.913 1.312 0.832 0.063 0.185
Mo 136.344 137.332 102.314 232.353 182.114 246.194 620.200 30.475 24.919
Cu 1248.865 865.438 1292.746 1241.710 655.340 779.246 470.916 431.354 425.105
La 782.339 655.530 304.988 358.567 364.879 336.211 115.402 11.486 11.771 1331.00 795.00 598.00 969.00
Ce 1190.376 1059.492 486.578 595.122 572.480 585.340 237.485 19.934 20.905 2085.00 1307.00 1031.00 1615.00
Nd 386.532 361.354 223.589 259.568 218.618 274.844 129.700 7.421 7.555 636.00 439.00 366.00 553.00
Sm 58.567 67.562 48.222 48.758 39.328 55.922 33.380 1.352 1.471 101.70 69.3 64.80 95.30
Yb 10.931 20.508 28.043 24.580 19.518 21.716 10.927 0.712 0.718 14.10 9.00 13.60 16.10
Lu 1.064 2.009 2.776 2.420 2.007 1.964 1.040 0.068 0.092 1.73 1.14 1.62 2.07
Rb/Sr 2.823 7.879 10.986 6.061 13.631 4.301 4.891 35.617 39.462 1000 950 101 96.0
Sr/Ba 23.807 9.424 31.131 16.645 14.084 8.143 33.65 0.629 0.584 0.18 0.50 1.76 1.27
Nb/Ta 24.714 16.983 16.727 42.781 9.947 7.508 15.049 6.792 2.221 37.67 23.85 34.62 23.18
Zr/Hf 3.818 2.866 4.42 2.483 2.2 2.135 5.673 29.348 17.492 37.59 41.94 36.25 40.10
图3 拉拉IOCG矿床中萤石微量元素含量变化趋势图
Fig 3 Change trend chart of trace elements content of fluorite in the Lala IOCG deposit
图4 拉拉IOCG矿床萤石及全岩微量元素原始地幔标准化蛛网图(原始地幔值据参考文献[ 28 ]) (a)萤石(I);(b)萤石(II) ;(c)萤石(III);(d)围岩
Fig.4 Spider diagram of trace elements in fluorite and host rock from the Lala IOCG deposit after primitive mantle-normalized(primitive mantle values after reference[ 28 ] ) (a)fluorite(I);(b)fluorite(II);(c)fluorite(III);(d)host rock
[1] Liu Yingjun,Cao Liming,Li Zhaolin,et al.Elements Geochemistry [M].Beijing:Geology Publishing House,1984.
[刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:地质出版社,1984.]
[2] Niu Hecai,Lin Chuanxian.Geochemical characteristics of trace elements in major minerals of Miannin REE deposit,Sichuan Province[J]. Geochimica,1995,24(3):287-293.
[牛贺才, 林传仙. 四川冕宁稀土矿床脉石矿物的微量及稀土元素地球化学特征[J].地球化学,1995,24(3):287-293.]
[3] Zhao Zhenhua.Trace Element Geochemical Principle[M].Beijing:Science Press,1997:56-130.
[赵振华. 微量元素地球化学原理[M].北京:科学出版社,1997:56-130.]
[4] Kempe U,Wolf D.Anomalously high Sc contents in ore minerals from Sn-W deposits:Possible economic significance and genetic implications[J].Ore Geology Reviews,2006,28(1):103-122.
[5] Zhang Xingyang,Gu Jiayu,Luo Ping,et al.Genesis of the fluorite in the Ordovician and its significance to the petroleum geology of Tarim Basin[J].Acta Petrologica Sinica,2006,22(8):2 220-2 228.
[张兴阳,顾家裕,罗平,等.塔里木盆地奥陶系萤石成因及其油气地质意义[J].岩石学报,2006,22(8):2 220-2 228.]
[6] Xiong Dexin,Sun Xiaoming,Shi Guiyong,et al.Trace elements,Rare Earth Elements(REE) and Nd-Sr isotopic composition in scheelites and their implications for the mineralization in Daping gold mine in Yunnan Province,China[J]. Acta Petrologica Sinica,2006,22(3):733-741.
[熊德信,孙晓明,石贵勇,等.云南大坪金矿白钨矿微量元素、稀土元素和Sr-Nd同位素组成特征及其意义[J].岩石学报,2006,22(3):733-741.]
[7] Xu Li,Sun Xiaoming,Tang Qian,et al.Trace elements and REE geochemistry of quartz veins from CCSD HP-UHP metamorphic rocks[J].Acta Petrologica Sinica,2007,23(12):3 287-3 294.
[徐莉,孙晓明,汤倩,等.CCSD HP-UHP变质岩中石英脉微量元素和稀土元素地球化学[J].岩石学报,2007,23(12):3 287-3 294.][8]Gaskova O L,Belogub E V,Makarov D V. Cobalt behavior during natural and technogenic oxidative leaching of Co-containing pyrites (Letnee chalcopyrite deposit,Southern Urals)[J].Russian Geology and Geophysics,2010,51(2):176-185.
[9] Rao Hongjuan,Luo Ping,Yang Zhengxi,et al.Geochemistry of fluorite and its genesis in Sickl area,Tarim Basin[J].Acta Sedimentologica Sinica,2010,28(4):821-831.
[饶红娟,罗平,阳正熙,等.塔里木盆地西克尔萤石地球化学特征及成因讨论[J].沉积学报,2010,28(4):821-831.]
[10] Huang Shiqi,Dong Shuwen,Huang Dezhi,et al. Geofluids features in the Daba Mountain during Yanshanian intracontinental orogenic movement[J].Acta Geoscientica Sinica,2014,35(1):49-58.
[黄始琪,董树文,黄德志,等.大巴山燕山期陆内造山地质流体活动特征[J].地球学报,2014,35(1):49-58.]
[11] Zhao Yanyan,Zheng Yongfei.Diagenesis of carbonate sediments[J].Acta Petrologica Sinica,2011,27(2):501-519.
[赵彦彦,郑永飞.碳酸盐沉积物的成岩作用[J].岩石学报,2011,27(2):501-519.]
[12] Hitzman M W,Oreskes N,Einaudi M T.Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits[J].Precambrian Research,1992,58:241-287.
[13] Twyerould S C.The Geology and Genesis of the Ernest Henry Fe-Cu-Au Deposit,NW Quneesland,Australia[D].Oregon State: United States,University of Oregon,1997.
[14] Zhao X F, Zhou M F.Fe-Cu deposits in the Kangdian region,SW China a Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province[J].Miner Deposita,2011,46:731-747.
[15] Yang Yaomin,Tu Guangchi,Hu Ruizhong,et al. Sm-Nd geochronology and its implications for the Yinachang Fe-Cu-REE deposit,Wuding[J].Chinese Science Bulletin,2005,50(12):1 253-1 258.
[杨耀民,涂光炽,胡瑞忠,等.武定迤纳厂Fe-Cu-REE矿床Sm-Nd同位素年代学及其地质意义[J].科学通报,2005,50(12):1 253-1 258.]
[16] Huang Congjun,Wang Jiangzhen,Li Zeqin.REE geochemistry of fluorite from the Lala IOCG deposit[J].Acta Mineralogica Sinica,2015,35(1):95-102.
[黄从俊,王奖臻,李泽琴.拉拉IOCG矿床萤石稀土元素地球化学特征[J].矿物学报,2015,35(1):95-102.]
[17] Chen W T, Zhou M F.Paragenesis,stable isotopes,and molybdenite Re-Os isotope age of the Lala iron-copper deposit,Southwest China[J].Economic Geology,2012,107:459-480.
[18] Zhu Zhimin,Zeng Lingxi,Zhou Jiayun,et al.Lala iron oxide-copper-gold deposit in Sichuan Province:Evidence from mineralography[J].Geological Journal of China University,2009,15(4):485-495.
[朱志敏,曾令熙,周家云,等.四川拉拉铁氧化物铜金矿床(IOCG)形成的矿相学证据[J].高校地质学报,2009,15(4):485-495.]
[19] Wang Jiangzhen,Li Zeqin,Huang Congjun.The main geological events of the Kangdian proterozoic eon and response from to the Lala IOCG deposit[J].Advances in Earth Science,2012,27(10):1 074-1 079.
[王奖臻,李泽琴,黄从俊.康滇地轴元古代重大地质事件与拉拉IOCG矿床成矿响应[J].地球科学进展,2012,27(10):1 074-1 079.]
[20] Li Zeqin,Wang Jiangzhen,Liu Jiajun,et al.Re-Os dating of molybdenite from Lala Fe-Oxide-Cu-Au-Mo-REE deposit,southwest China:Implications for ore genesis[J].Contributions to Geology and Mineral Resources Research,2003,18(1):39-42.
[李泽琴,王奖臻,刘家军,等.拉拉铁氧化物—铜—金—钼—稀土矿床Re-Os同位素年龄及其地质意义[J].地质找矿论丛,2003,18(1):39-42.]
[21] Zhu Zhimin, Sun Yali.Direct Re-Os dating of chalcopyrite from the Lala IOCG deposit in the Kangdian Copper Belt,China[J].Economic Geology,2013,108:871-882.
[22] Zhou Jiayun,Zheng Rongcai,Zhu Zhimin,et al.Geochemistry and Sm-Nd dating of the gabbro in the Lala copper ore district, Sichuan Province,China[J].Bulletin of Mineralogy,Petrology and Geochemistry,2009,28(2):111-122.
[周家云,郑荣才,朱志敏,等.四川会理拉拉铜矿辉长岩群地球化学与Sm-Nd同位素定年[J].矿物岩石地球化学通报,2009, 28(2):111-122.]
[23] Wang Jiangzhen,Li Zeqin,Liu Jiajun,et al.Polytype and typomorphic characteristics of molybdenite from Lala Fe-Oxide-Cu-Au-Mo-Co-REE deposit in Sichuan Province,China[J].Contributions to Geology and Mineral Resources Research,2004,19(2):96-99.
[王奖臻,李泽琴,刘家军,等.拉拉铁氧化物—铜—金—钼—钴—稀土矿床辉钼矿的多型及标型特征[J].地质找矿论丛,2004,19(2):96-99.]
[24] Qi L, Grégoire D C.Determination of trace elements in twenty-six Chinese geochemistry reference materials by Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards Newsletters,2000,24(1):51-63.
[25] Schönenberger J,Köhler J,Markl G.REE systematics systematics of fluorides,calcite and siderite in peralkaline plutonic rocks from the Gardar Province,South Greenland[J].Chemical Geology,2008,247(1/2):16-35.
[26] Xue Chunji,Zeng Rong,Gao Yongbao,et al.Fluid processes of a heavy metallogenesis at Jinding,Lanping, W-China[J].Acta Petrologica Sinica,2006,22(4):1 031-1 039.
[薛春纪,曾荣,高永宝,等.兰坪金顶大规模成矿的流体过程——不同矿化阶段流体包裹体微量元素约束[J].岩石学报,2006,22(4):1 031-1 039]
[27] Sun Yan,Shu Xiaolan, Xiao Yuanfu.Isotopic geochemistry of the Lala copper deposit,Sichuan Province,China and its metallogenetic significance[J].Geochimica,2006,35(5):553-559.
[孙燕,舒晓兰,肖渊甫.四川省拉拉铜矿床同位素地球化学特征及成矿意义[J].地球化学,2006,35(5):553-559.]
[28] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society London,Special Publications,1989,42:313-345.
[29] Li Z X,Li X H,Zhou H W,et al.Grenvilian continental collision in south China:New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia[J].Geology,2002,20(2):163-166.
[1] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[2] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[3] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[4] 方维萱, 李建旭. 智利铁氧化物铜金型矿床成矿规律、控制因素与成矿演化[J]. 地球科学进展, 2014, 29(9): 1011-1024.
[5] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[6] 王奖臻,李泽琴,黄从俊. 康滇地轴元古代重大地质事件与拉拉IOCG矿床成矿响应[J]. 地球科学进展, 2012, 27(10): 1074-1079.
[7] 黄建国,李虎杰,李文杰,董 磊. 贵州戈塘金矿萤石微量元素特征及钐—钕测年[J]. 地球科学进展, 2012, 27(10): 1087-1093.
[8] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[9] 胡耀武,Michael P.Richards,刘武,王昌燧. 骨化学分析在古人类食物结构演化研究中的应用[J]. 地球科学进展, 2008, 23(3): 228-235.
[10] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
[11] 王将克;邹和平;郑卓. 农业生物地球化学———新兴的边缘学科[J]. 地球科学进展, 2004, 19(5): 852-859.
[12] 陈晋阳;郑海飞;曾贻善. 微量元素在幔源矿物与热液之间分配系数的研究进展[J]. 地球科学进展, 2004, 19(2): 224-229.
[13] 刘大锰,刘志华,李运勇. 煤中有害物质及其对环境的影响研究进展[J]. 地球科学进展, 2002, 17(6): 840-847.
[14] 陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3): 402-410.
[15] 刘桂建,彭子成,王桂梁,杨萍月,Chou Chenglin. 煤中微量元素研究进展[J]. 地球科学进展, 2002, 17(1): 53-62.
阅读次数
全文


摘要