地球科学进展 ›› 2003, Vol. 18 ›› Issue (5): 691 -696. doi: 10.11867/j.issn.1001-8166.2003.05.0691

研究论文 上一篇    下一篇

始新世—渐新世界线的全球气候事件:从“温室”到“冰室”
拓守廷,刘志飞   
  1. 同济大学海洋地质教育部重点实验室,上海 200092
  • 收稿日期:2003-06-23 修回日期:2003-07-25 出版日期:2003-12-20
  • 通讯作者: 拓守廷 E-mail:tuosht@hotmail.com
  • 基金资助:

    国家自然科学基金项目“青藏高原可可西里地区新生代古气候记录”(编号:40102010);国家重点基础研究发展规划项目“地球圈层相互作用中的深海过程和深海记录”(编号:G2000078500);上海市青年科技启明星计划“渐新世最早期全球最大冰盖事件及其对未来气候预测应用的研究”资助.

GLOBAL CLIMATE EVENT AT THE EOCENE-OLIGOCENE TRANSITION: FROM GREENHOUSE TO ICEHOUSE

Tuo Shouting,Liu Zhifei   

  1. Laboratory of marine Geology, Tongji University, Shanghai 200092, China
  • Received:2003-06-23 Revised:2003-07-25 Online:2003-12-20 Published:2003-10-01

新生代以来,全球气候在持续不断的变冷,从两极无冰的"温室地球"变为现今两极终年有冰的"冰室地球",经历了多次冰盖扩张的变冷事件。始新世-渐新世界线(E/O)附近,δ18O值大幅度正偏,在短期内由 1.2‰迅速增加到 3.0‰,底层海水温度从12 ℃降低为 4.5 ℃。保存在大洋和大陆中的记录表明:E/O界线附近,全球气温大幅降低,海陆生物均有不同程度的灭绝,指示了气候变冷、变干的趋势。始新世-渐新世转换期间,南极洲与澳大利亚之间的塔斯曼尼亚海道和南极洲与南美洲之间的德雷克海峡(DrakeStrait)相继打开,形成环南极洋流,从而阻止赤道地区的热量向南极传送,导致南极大陆"热隔绝",使南极大陆东部为冰川所覆盖。最近的研究显示,E/O事件是与大气CO2含量快速变化密切相关的瞬时气候变化,其变化速率类似于现今地球由于人类活动引起大气CO2的变化,表明大气CO2浓度的变化在这一事件中起了极为重要的作用。

During Cenozoic, Earth's climate has undergone a progressive cooling, from bipolar ice-free ( greenhouse) to bipolar icesheets (icehouse), experienced several icesheet growth and decay events. At the Eocene-Oligocene boundary (E/O), δ18O increased rapidly from 1.2‰ to 3.0‰ in a short time, deep-sea temperature decreased from 12℃ to 4.5℃. The marine and terrestrial records show that near the E/O, global temperature has a significant decreasing, the biotic extinctions happened both in ocean and land, indicating the cooling and drying trend on global climate. During the Eocene-Oligocene transition, the Tasmania Seaway (between the Antarctic and the Australia) and the Drake Passage (between the Antarctic and South America) opening and widening, it may caused the formation of the Antarctic Circumpolar Current and the subsequent thermal isolation of the Antarctic continent, which formed the East Antarctic Ice Sheet. The last research finds that the E/O event is an instantaneous climate change, which has a close relationship with the atmospheric CO2 concentration viriation. Its change rate similar with the atmospheric CO2 concentration diversification reduced by humankinds activity at present, implying that the atmospheric CO2 concentration viriation play a more important role than the opening of the passages in the E/O event.

中图分类号: 

[1] Barrett P. Cooling a continent[J]. Nature, 2003, 421: 221-223.

[2] Deconto R M, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2[J]. Nature, 2003,421: 245-249.

[3] Kennett J P, Shackleton N J. Oxygen isotopic evidence for the development of the psychrosphere 38 Ma ago[J]. Science, 1976, 260: 513-515.

[4] Zachos J C, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292: 686-693.

[5] Scotese C R. Paleomap project[EB/OL]. http://www.scotese.com/climate.htm,2003-05-30.

[6] Exon N. Drilling reveals climatic consequences of Tasmanian gateway opening[J]. EOS, 2002, 83 (23): 253-259.

[7] Diester-Haass L, Zahn R. Paleoproductivity increase at the Eocene-Oligocene climatic transition: ODP/DSDP sites 763 and 592[J]. Palaeogeography, Palaeoclimatology, Palaeocology, 2001, 172: 153-170.

[8] Marino M, Flores J A. Middle Eocene to early Oligocene calcareous nannofossil stratigraphy at Leg 177 Site 1090[J]. Marine Micropaleontology, 2002, 45: 383-398.

[9] Prothero D R. Does climatic change drive mammalian evolution?[J]. GSA Today, 1999, 9(9): 1-7.

[10] Diester-Haass L, Robert C, Chamley H. The Eocene-Oligocene preglacial-glacial transition in the Atlantic Sector of the Southern ocean (ODP Site 690)[J]. Marine Geology, 1996, 131: 123-149.

[11] Ehrmann W. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics[J]. Palaeogeography,Palaeoclimatology,Palaeocology,1998,139: 213-223.

[12] Wolfe J A. Climatic, floristic, and vegetational changes near the Eocene/Oligocene boundary in North America [A]. In: Prothero D R, Berggren W A, eds. Eocene-Oligocene Climatic and Biotic Evolution [C]. Princeton: Princeton University Press, 1992. 421-436.

[13] Retallack G J. Paleosols and changes in climate and vegetation acroo the Eocene/Oligocene boundary [A]. In: Prothero D R, Berggren W A, eds. Eocene-Oligocene Climatic and Biotic Evolution [C]. Princeton: Princeton University Press, 1992. 382-398.

[14] Ivany L C, patterson W P, Lohmann K C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary[J]. Nature, 2000, 407: 887-890.

[15] Cavagnetto C, Anddon P. Preliminary palynological data on floristic and climatic changes during the Middle Eocene-Early Oligocene of the eastern Ebro Basin, northeast Spain[J]. Review of Palaeobotany and Palynology, 1996, 92: 281-305.

[16] Blondel C. The Eocene-Oligocene ungulates from western Europe and their environment[J]. Palaeogeography, Palaeoclimatology, Palaeocology, 2001, 168: 125-139.

[17] Buenhy N, Carlson S J, Spero H J, et al. Evidence for the Early Oligocene formation of a proto-Subtropical Convergence from oxygen isotope records of New Zealand Paleogence brachiopods[J]. Palaeogeography,Palaeoclimatology, Palaeocology, 1998, 138: 43-68.

[18] Kerr R A. Chesapeake Bay impact crater confirmed[J]. Science,1995, 269: 1 672.

[19] Bottomley R, Grieve R, York D, et al. The age of Popigai impact event and its relation to events at the Eocene/Oligocene boundary[J]. Nature, 1997, 388: 365-368.

[20] Hut P, Alvarez W, Elder W P, et al. Comet showers as a cause of mass extinctions[J]. Nature, 1987, 329: 118-126.

[21] Vonhof H B, Smit J, Brinkhuis H, et al. Global cooling accelerated by early late Eocene impacts[J]. Geology, 2000, 28(8): 687-690.

[22] Prothero D R. The late Eocene-Oligocene extinctions[J]. Annual Review of Earth Planetary Science, 1994, 22: 145-165.

[23] Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years[J]. Nature, 2000, 406: 695-699.

[24] Zachos J C, Quinn, T M, Salamy K A. High-resolution (104 yr) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition[J]. Paleoceanography, 1996, 11(3): 251-266.

[25] Ivany L C, Nesbitt E A, Prothero D R. The marine Eocene-Oligocene Transition: A synthesis [A]. In: Prothero D R, Ivany L C, Nesbitt E A, eds. From Greenhouse to Icehouse: The Marinr Eocene-Oligocene Transition [C]. New York: Columbia University Press, 2003. 522-534.

[1] 郑聚锋, 潘根兴, 程琨, 张旭辉. 从《IPCC 2006 国家温室气体排放清单增补:2013湿地》谈湿地温室气体计量进展及问题[J]. 地球科学进展, 2014, 29(10): 1120-1125.
[2] 张介霞, 詹力扬, 陈立奇. 南大洋N 2O研究进展及测量新技术展望 *[J]. 地球科学进展, 2013, 28(11): 1201-1208.
[3] 赵吉,李靖宇,周玉,白玉涛,于景丽. 甲烷氧化与氨氧化微生物及其耦合功能[J]. 地球科学进展, 2012, 27(6): 651-659.
[4] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
[5] 张茂亮,郭正府,成智慧,张丽红,郭文峰. 火山区温室气体排放研究进展[J]. 地球科学进展, 2011, 26(12): 1235-1247.
[6] 曾静静,曲建升,张志强. 国际温室气体减排情景方案比较分析[J]. 地球科学进展, 2009, 24(4): 436-443.
[7] 胡永云,丁 峰,夏 炎. 全球变化条件下的平流层大气长期变化趋势[J]. 地球科学进展, 2009, 24(3): 242-251.
[8] 曲建升,曾静静,张志强. 国际主要温室气体排放数据集比较分析研究[J]. 地球科学进展, 2008, 23(1): 47-54.
[9] 于革. 早新生代温室气候及冰期气候转型的模拟研究[J]. 地球科学进展, 2007, 22(4): 369-375.
[10] 李迎春,林而达,甄晓林. 农业温室气体清单方法研究最新进展[J]. 地球科学进展, 2007, 22(10): 1076-1080.
[11] 拓守廷,刘志飞,成鑫荣,赵泉鸿. 南大西洋渐新世初碳酸盐记录(ODP 1263站)[J]. 地球科学进展, 2006, 21(8): 800-805.
[12] 王成善. 白垩纪地球表层系统重大地质事件与温室气候变化研究[J]. 地球科学进展, 2006, 21(8): 838-842.
[13] 黄维,汪品先. 南海沉积物总量的统计:方法与结果[J]. 地球科学进展, 2006, 21(5): 465-473.
[14] 詹力扬,陈立奇. 海洋N 2O的研究进展[J]. 地球科学进展, 2006, 21(03): 269-277.
[15] 胡永云;闻新宇. 冰雪地球的研究进展综述[J]. 地球科学进展, 2005, 20(11): 1226-1233.
阅读次数
全文


摘要