地球科学进展 ›› 2001, Vol. 16 ›› Issue (4): 540 -543. doi: 10.11867/j.issn.1001-8166.2001.04.0540

综述与评述 上一篇    下一篇

天然气水合物的地热研究进展
金春爽,汪集旸   
  1. 中国科学院地质与地球物理研究所,北京 100029
  • 收稿日期:2000-11-27 修回日期:2001-01-20 出版日期:2001-08-01
  • 通讯作者: 金春爽(1974-),女,辽宁康平人,博士生,主要从事天然气水合物及地热学研究. E-mail:jinchunshuang@sina.com
  • 基金资助:

    国家自然科学基金重点项目“南海北部大陆边缘盆地的活动热流体和油气成藏动力学及其地质背景”(编号:49732005);海洋863项目“海底气体水合物资源探查的关键技术”(编号:820-探-5)联合资助.

THE PROGRESS IN GEOTHERMAL STUDIES ON GAS HYDRATES

JIN Chunshuang, WANG Jiyang   

  1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2000-11-27 Revised:2001-01-20 Online:2001-08-01 Published:2001-08-01

天然气水合物的地热研究在以下几个方面都取得了重要进展:热流与似海底反射层的关系;水合物稳定带的研究;水合物热物理参数的确定;水合物形成过程中的热状态;热导率的应用。指出了今后水合物的地热学研究方向。

The researches on gas hydrates have recently become a major focus both at home and abroad. Recently, geothermal studies on gas hydrates have m
ade remarkable progress in the following aspects. (1) The relationship between heat flow and bottom simulating reflector (BSR), is mainly used to derive the value of heat flow from the data of BSRs, especially where heat flow measuring point is rare. (2) The research on gas hydrate stability zone, mainly predict the depth to the base of gas hydrate stability zone from the geothermal data, such as sea bottom temperature and geothermal gradient and so on. (3) The gas hydrates thermal properties determination, which is the foundation of geothermal studies on gas hydrate, is usually attained by three ways:in situ measurements, laboratory measurements and derivation from electrical property. (4) The thermal regime during gas hydrate formation and evolution. (5) The application of thermal conductivity in predicting the distribution of gas hydrate in sediments and establishing the relationship with pressure wave velocity. In the paper, a review on these aspects has been given and further study perspectives are pointed out.

中图分类号: 

[1]  Thomas H Shipley, Mark H Houston. Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises[J]. AAPG Bulletin, 1979, 63(12): 2 204-2 213.
[2]  Yamano M, Uyeda S. Estimates of heat flow derived from gas hydrates[J]. Geology, 1982, 10: 339-343
[3]  Tim Minshull, Robert White. Sediment compacton and fluid migration in the Makran accretionary prism[J]. JGR, 1989, 94(B6): 7 387-7 402.
[4]  Townend J. Estimates of conductive heat flow through bottom-simulating reflectors on the Hikurangi and southwest Fiordland continental margins, New Zealand[J]. Marine Geology, 1997, 141: 209-220.
[5]  Chuen-Tien Shyu, Shu-Kun Hsu, Char-Shine Liu. Heat flow off Southwest Taiwan: Measurements over mud diapers and estimated from bottom simulating reflectors[J]. TAO, 1998, 9(4): 795-812.
[6]  Golmshtok A Y, Duchkov A D. Heat Flow Derived from the BSR, Lake Baikal, Siberia[R]. Russia: VI International Conference on Gas in Marine Sediments,2000. 33. 
[7]  Hyndman R D, Foucher. Deep sea bottom-simulating-reflectors: Calibration of the hydrate stability field as used for heat flow estimates[J]. Earth and Planetary Science Letters, 1992, 109: 289-301. 
[8]  Tréhu A M, Lin G, Maxwell, et al. A seismic reflection profile across the Cascadia subduction zone offshore central Oregon: New constrains on the deep crustal structure and on the distribution of methane in the accretionary prism[J]. JGR, 1995, 100: 15 101-15 116.
[9]  Brown K M, Bangs N L. The nature, distribution, and origin of gas hydrate in the Chile triple junction region[J]. Earth and Planetary Science Letters, 1996, 139: 471-483.
[10]  Chris Baillie, Edward Wichert. Chart gives hydrate formation temperature for natural gas[J]. Oil & gas journal, 1987(6): 37-39.
[11]  Holder G D, Malone R D. Effects of gas composition and geothermal properties on the thickness and depth of natural-gas -hydrate zones[J]. Journal of Petroleum Technology, 1987, 9: 1 147-1 152.
[12]  Miles P R. potential distribution of methane hydrate beneath the European continental margins[J]. Geophysical Research Letters, 1995, 22(23): 3 179-3 182.
[13]  Hanumantha Rao Y. C-program for the calculation of gas hydrate stability zone thickness[J]. Computers & Geosciences, 1999, 25: 705-707.
[14]  Majorowicz J A, Smith S L. Review of ground temperatures in the Mallik field area: a constraint to the methane hydrate stability[J]. Geological Survey of Canada Bulletin, 1999,  544: 45-56.
[15]  Sloan E D. Clathrate Hydrates of Natural Gases[M]. New York: Marcel Dekker, Inc, 1998. 62-64.
[16]  Osamu Matsubayashi, Nigel Edwards R. Relationship between electrical and thermal conductivities for evaluating thermal regime of gas hydrate bearing sedimentary layers [A]. In: The Annals of the New York Academy of Sciences[C].1999,912:167-172.
[17]  Jeffrey Poort, Maarten Vanneste, Mark De Batist, et al. Measured and BSR derived heat flow in an area of gas venting in Lake Baikal[R]. VI International Conference on Gas in Marine Sediments. 2000. 113.
[18]  Woodside R S, Meessmer J H. Thermal conductivity of porous media, I, Unconsolidated sand[J]. J Appl Phys., 1961, 32: 688-706.
[19]  Hamilton E L. Sound velocity-dencity relations in sea-floor sediments and rocks[J]. J  Acoust Soc Am, 1978, 634: 366-377.
[20] Κутас P И. The occurrence of gas hydrate from geothermal characteristics in Pontic Basin[J]. Shi. Translate. Natural Gas Geoscience, 1998, 3-4: 25~31 (in Chinese). [Κутас P И. 黑海盆地气水合物形成的地热观点[J]. 史斗译. 天然气地球科学,1998,9(3-4): 25-31.]
[21]  Okuda. The research situation of gas hydrate exploration in Japan[J]. Xu. Translate. Marine Geology Development, 1999, 9: 6~10 (in Chinese).[奥田久义. 日本气体水合物勘探研究概况[J]. 许东禹摘译. 海洋地质动态,1999,9: 6-10.]
[22]  Ian Ridley, Kathy Dominic. Gas hydrates keep energy on 21 century [A]. Shi, et al. The study progress of gas hydrates in foreign countries[C]. LanZhou University Press, 1992. 26~31.[Ian Ridley, Kathy Dominic. 天然气水合物将为21世纪提供能源[A]. 见:史斗等编. 国外天然气水合物研究进展[C]. 兰州大学出版社,1992. 26-31.]
[23]  Jin Chun-shuang, Wang Ji-yang. The methods to get thermal properties of gas hydrates[A]. Annual of the Chinese Geophysical Society[Z]. Wuhan: China University of Geosciences Press, 2000: 217.[金春爽,汪集旸. 确定天然气水合物热物理参数的方法[A].中国地球物理学会年刊[Z]. 武汉:中国地质大学出版社,2000.]

[1] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[2] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[3] 程超, 于文刚, 贾婉婷, 林海宇, 李莲庆. 岩石热物理性质的研究进展及发展趋势[J]. 地球科学进展, 2017, 32(10): 1072-1083.
[4] 肖红平, 林畅松, 彭涌, 魏伟, 张金华, 张巧珍. 天然气水合物油气系统概念内涵及实例分析[J]. 地球科学进展, 2017, 32(1): 21-33.
[5] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[6] 徐自为,刘绍民,徐同仁,丁闯. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889.
[7] 刘乐乐,张旭辉,鲁晓兵. 天然气水合物地层渗透率研究进展[J]. 地球科学进展, 2012, 27(7): 733-746.
[8] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[9] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
[10] 陈礼仪,王 胜,张永勤. 高原冻土天然气水合物钻探低温泥浆基础液研究[J]. 地球科学进展, 2008, 23(5): 469-473.
[11] 吴青柏,程国栋. 多年冻土区天然气水合物研究综述[J]. 地球科学进展, 2008, 23(2): 111-119.
[12] 李清,王家生,王晓芹,陈祈,陈洪仁. IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008, 23(11): 1161-1166.
[13] 祝有海. 加拿大马更些冻土区天然气水合物试生产进展与展望[J]. 地球科学进展, 2006, 21(5): 513-520.
[14] 陈忠,颜文,陈木宏,王淑红,肖尚斌,陆钧,杨华平. 海底天然气水合物分解与甲烷归宿研究进展[J]. 地球科学进展, 2006, 21(4): 394-400.
[15] 于晓果;李家彪. 天然气水合物分解及其生态环境效应研究进展[J]. 地球科学进展, 2004, 19(6): 947-954.
阅读次数
全文


摘要