地球科学进展 ›› 2011, Vol. 26 ›› Issue (2): 157 -165. doi: 10.11867/j.issn.1001-8166.2011.02.0157

综述与评述 上一篇    下一篇

沉积物重力流研究进展综述
李云 1 ,郑荣才 1,朱国金 2,胡晓庆 2   
  1. 1.“油气藏地质及开发工程”国家重点实验室,成都理工大学,四川成都610059;2.中海石油研究中心,北京100027
  • 收稿日期:2010-05-17 修回日期:2010-08-27 出版日期:2011-02-10
  • 通讯作者: 郑荣才(1950-),男,上海人,教授,主要从事沉积地质学、层序地层学和石油地质学研究.  E-mail:zhengrc@cdut.edu.cn
  • 基金资助:

    国家科技重大专项“南海深水油气勘探开发示范工程——荔湾3-1气田总体开发方案及基本设计技术”子项目“深水扇储层层序地层和沉积模式研究”(编号 2008ZX05056-02-02)资助.

Reviews on Sediment Gravity Flow

Li Yun 1, Zheng Rongcai 1, Zhu Guojin 2, Hu Xiaoqing 2   

  1. 1.State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu610059, China;  2.CNOOC Research Center, Beijing100027, China
  • Received:2010-05-17 Revised:2010-08-27 Online:2011-02-10 Published:2011-02-10

关于沉积物重力流的研究已取得了长足进展,其石油地质意义已得到了足够重视,但在理解重力流的流体类型及沉积作用特点时仍有一定难度,从而出现了分类方案及术语使用非常混乱的严重现象,反过来又增加了理解的难度及认识的分歧。在总结国内外研究进展的基础上,试图理清重力流的各种分类方案、相应术语的涵义及其沉积特征,得出产生此现象的原因是多方面的。以珠江口盆地中新统珠江组深水扇为例,说明了深水环境中常见的浊流及碎屑流的沉积特征,和重力流过程中常见的流体性质转换及可能成因。最后指出了重力流研究中存在的一些问题,认为今后的发展方面包括跳出模式束缚、谨慎地使用术语及加强实验模拟等。沉积物重力流研究任重而道远。

Significant progress has been made in the research of sediment gravity flow and its hydrocarbon significance has been paid enough attention by oil and gas industry since 1950s. However, there still exist  certain difficulties still exist when we understand the fluid types and their depositonal characteristics. Therefore, various classification schemes and different nomenclatures occurred, and in turn, this phenomenon are increases the difficulties of our understanding and awareness. Based on the recent progresses at home and a broad, the paper tries to set the record straight concerning the classification of sediment gravity flow, the corresponding meaning of the terms and their sedimentary characteristics. The reasons for chaos are manifold. Taken Miocene submarine fan in Zhujiang Formation Pearl River Mouth basin for example, the common turbidity current and debris flow and their depositon characteristics were illustrated. The common fluid transformation in gravity flow is described. At last, some problems in the research of sediment gravity flow were pointed out. The future developing direction includes breaking out the stereotype of thinking, careful use of the terms and enhancing experiment. On the whole, the study of sediment gravity flow has a long way to go.

中图分类号: 

[1]Kuenen Ph H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. Journal of Geology, 1950, 58: 91-127.
[2]Mutti E, Bernoulli Daniel, Ricci Lucchi Franco,et al. Turbidites and turbidity currents from Alpine flysch' to the exploration of continental margins[J]. Sedimentology, 2009, 56: 267-318.
[3]Middleton G V, Hampton M A. Sedimentgravity flows: Mechanics of flow and deposition[C]Middleton G V, Bouma A H, eds. Turbidites and DeepWater Sedimentation: Short Course Lecture Notes,Part I. California: Los Angeles,1973:1-38.
[4]Middleton G V, Hampton M A. Subaqueous sediment transport and deposition by sediment gravity flows[C]Stanley D J,Swift D J P, eds. New York:Marine Sediment Transport and Environmental Management, Wiley,  1976:197-218.
[5]Lowe D R. Sediment-gravity flows: Their classification, and some problems of applications to natural flows and deposits[C]Doyle L J, Pilkey O H, eds. Geology of Continental Slopes. Society of Economic Paleontologists and Mineralogists Special Publication, 1979, 27: 75-82.
[6]Lowe D R. Sediment-gravity flows, II: Depostional models with special reference to the deposits of highdensity turbidity currents[J]. Journal of Sedimentary Petrology, 1982, 52: 279-297.
[7]Nardin T R, Hein F J, Gorsline D S, et al. A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems[C]Doyle L J, Pilkey O H, eds.Geology of Continental slopes. Society of Economic Paleontologists and Mineralogists Special Publication, 1979, 27: 61-73.
[8]Postma G. Classification for sedimentgravityflow deposits based on flow conditions during sedimentation[J]. Geology, 1986, 14: 291-294.
[9]Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48: 269-299.
[10]Zheng Rongcai, Wen Huaguo, Han Yonglin. et al. Discovery and significance of sublacustrine slump turbidite fans in chang 6 oil-bearing formation of Baibao region in Ordos Basin,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2006,33(6): 566-575.[郑荣才,文华国,韩永林,等. 鄂尔多斯盆地白豹地区长6油层组湖底滑塌浊积扇沉积特征及其研究意义[J]. 成都理工大学学报:自然科学版, 2006, 33(6):566-575.]
[11]Zou Caineng, Zhao Zhengzhang, Yang Hua,et al. Genetic mechanism and distribution of sandy debris flows in Terrestrial lacustrine basin[J].Acta Sedimentologica Sinica,2009, 27(6): 1 065-1 073.[邹才能,赵政璋,杨华,等. 陆相湖盆深水砂质碎屑流成因机制与分布特征——以鄂尔多斯盆地为例[J]. 沉积学报, 2009, 27(6):1 065-1 073.]
[12]Li Xiangbo,Liu Huaqing,Wanyan Rong,et al.First discovery of the sandy debris flow from the Triassic Yanchang Formation, Ordos Basin[J].Lithologic Reservoirs,2009,21(3):19-21.[李相博,刘化清,完颜容,等.鄂尔多斯盆地三叠系延长组砂质碎屑流储集体的首次发现[J]. 岩性油气藏,2009,21(3):19-21.]
[13]Zhang Weiyan, Zhang Fuyuan, Zhang Xiaoyu. Characteristics of turbidity deposits from sediment cores in eastern South China Sea[J]. Journal of Tropical Oceanography, 2003,22(3): 36-43.[章伟艳,张富元,张霄宇. 南海东部海域柱样沉积物浊流沉积探讨[J]. 热带海洋学报,2003,22(3): 36-43.]
[14]Peng Dajun, Chen Changmin, Pang Xiong, et al. Discovery of deepwater fan system in South China Sea[J].Acta Petrolei Sinica,2004,25(5): 17-23.[彭大钧, 陈长民, 庞雄, 等. 南海珠江口盆地深水扇系统的发现[J].石油学报,2004,25(5): 17-23.]
[15]Li Xianghui, Wang Chengshan, Jin Wei, et al. A review on deepsea sedimentation theory:Significances to oil-gas exploration[J]. Acta Sedimentologica Sinica, 2009, 27(1):77-86.[李祥辉, 王成善, 金玮, 等. 深海沉积理论发展及其在油气勘探中的意义[J].沉积学报,2009,27(1): 77-86.]
[16]Dott R H Jr. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin,1963, 47:104-128.
[17]Lowe Donald R, Guy Martin. Slurryflow deposits in the Britannia Formation (Lower Cretaceous), North Sea: A new perspective on the turbidity current and debris flow problem[J]. Sedimentology, 2000, 47: 31-70.
[18]Guibaudo G. Subaqueous sediment gravity flow deposits: Practical criteria for their field description and classification[J].Sedimentology, 1992, 39: 423-454.
[19]Nemec W, Steel R J. Alluvial and coastal conglomerates: Their significant features and some comments on gravelly massflow deposits[C]Koster E H, Steel R J, eds. Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geology Memoir, 1984,10:1-30.
[20]Shanmugam G. Highdensity turbidity currents: Are they sandy debris flows?[J].Journal of Sedimentary Research,1996, 66: 2-10.
[21]Shanmugam G.50 years of the turbidite paradigm (1950s1990s): Deep-water processes and facies models—A critical perspective[J].Marine and Petroleum Geology, 2000, 17: 285-342.
[22]Shanmugam G. Ten turbidite myths[J].EarthScience Reviews,2002, 58: 311-341.
[23]Shultz A W. Subaerial debrisflow deposition in the upper Paleozoic Cutler Formation, western Colorado[J].Journal of Sedimentary Research,1984, 54: 759-772.
[24]Mutti E, Tinterr R, Remacha E, et al. An introduction to the analysis of ancient turbidite basins from an outcrop perspective[J].AAPG Continuing Education Course Note,1999, 9: 61.
[25]Sanders J E. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms[J].Society of Economic Paleontologists and Mineralogists Special Publication,1965,12:192-219.
[26]Hodson J M, Alexander Jan. The effects of graindensity variation on turbidity currents and some implications for the deposition of carbonate turbidites[J].Journal of Sedimentary Research,2010, 80: 515-528.
[27]Piper D J W, Normark W R. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective[J].Journal of Sedimentary Research, 2009; 79: 347-362.
[28]Xu J P. Normalized velocity profiles of field-measured turbidity currents[J].Geology,2010,38: 563-566.
[29]Shanmugam G. Deepmarine tidal bottom currents and their reworked sands in modern and ancient submarine canyons[J].Marine and Petroleum Geology,2003, 20: 471-491.
[30]Gee M J R, Masson D G, Watts A B, et al. The Saharan debris flow: An insight into the mechanics of longrunout submarine debris flows[J]. Sedimentology,1999, 46: 317-335.
[31]Stow D A V, Johansson Melissa. Deepwater massive sands: Nature, origin and hydrocarbon implications[J].Marine and Petroleum Geology,2000, 17:145-174.
[32]Makoto Ito.Downfan transformation from turbidity currents to debris flows at a channel-to-lobe transitional zone: The Lower Pleistocene otadai formation, Boso Peninsula, Japan[J].Journal of Sedimentary Research,2008,78: 668-682.
[33]Maarten Felix, Peakall J. Transformation of debris flows into turbidity currents: Mechanisms inferred from laboratory experiments[J].Sedimentology,2006,53(1):107-123.[34]Talling P J, Amy L A, Wynn R,et al. Beds comprising debrite sandwiched within co-genetic turbidite: Origin and widespread occurrence in distal depositional environments[J].Sedimentology,2004,51: 163-194.
[35]Haughton Peter, Davis Christopher, McCaffrey William,et al. Hybrid sediment gravity flow deposits classification, origin and significance[J].Marine and Petroleum Geology,2009,26:1 900-1 918.
[36]Lowe D R, Guy M. Slurryflow deposits in the Britannia Formation (Lower Cretaceous), North Sea: A new perspective on the turbidity current and debris flow problem[J].Sedimentology,2000, 47:31-70.
[37]Lowe D R, Guy M, Palfrey A. Facies of slurryflow deposits, britannia formation (Lower Cretaceous), North Sea: Implications for flow evolution and deposit geometry[J]. Sedimentology, 2003, 50: 45-80.
[38]Zoltán Sylvester, Lowe D. Textural trends in turbidites and slurry beds from the Oligocene flysch of the east Carpathians, Romania[J].Sedimentology,2004, 51: 945-972.[39]Bouma A H. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation[M]. Amsterdam: Elsevier, 1962:168.
[40]Huang H, Imran J, Pirmez C. Numerical modeling of poorly sorted depositional turbidity currents[J].Journal of Geophysical Research,2007,112,C01014,doi: 10.1029/2006JC003778.
[41]Mutti E, Bernoulli Daniel, Ricci Lucchi Franco,et al. Reply to the discussion by ganapathy shanmugam on  “Turbidities and turbidity currents from Alpine flysch to the exploration of continental margins” by Mutti et al. (2009), Sedimentology, 56, 267-318[J].Sedimentology,2010,57: 933-934.

[1] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[2] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[3] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[4] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[5] 王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
[6] 徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5): 552-558.
[7] 高红灿,郑荣才,魏钦廉,陈发亮,陈 君,朱登锋,刘 云. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
[8] 李相博,付金华,陈启林,刘显阳,刘化清,郭彦如,完颜容,廖建波,魏立花,黄军平. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展, 2011, 26(3): 286-294.
[9] 钟广法,李前裕,郝沪军,王嘹亮. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9): 907-913.
[10] 季顺迎;岳前进;王瑞学. 海冰动力学数值方法研究进展[J]. 地球科学进展, 2004, 19(6): 963-970.
[11] 杜远生,韩 欣. 论震积作用和震积岩[J]. 地球科学进展, 2000, 15(4): 389-394.
[12] 李建明. 沉降速率作为独立变量的水流构造三维稳定域图[J]. 地球科学进展, 1990, 5(1): 28-31.
阅读次数
全文


摘要