地球科学进展 ›› 2007, Vol. 22 ›› Issue (10): 1019 -1026. doi: 10.11867/j.issn.1001-8166.2007.10.1019

IODP研究 上一篇    下一篇

意大利上新世古生产力的轨道驱动
丁晓辉,王汝建,李建如,黄恩清   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2007-09-02 修回日期:2007-09-04 出版日期:2007-10-15
  • 通讯作者: 王汝建(1959-),男,云南昆明人,教授,主要从事古生物与古海洋研究.E-mail:rjwang@mail.tongji.edu.cn E-mail:rjwang@mail.tongji.edu.cn
  • 基金资助:

    国家重点基础研究发展计划项目“地球圈层相互作用中的深海过程和深海记录”(编号:G2000078505);国家自然科学基金项目“西太平洋暖池与东亚古环境:沉积记录的海陆对比”(编号:40321603);上海市科委国际合作重点项目“气候长周期变化的新机制:中国和意大利的地质证据”;国家高技术研究发展计划项目“大洋钻探技术预研究”(编号:2004AA615030)联合资助.

The Paleoproductivity Forced by Earth Orbital Forcing in Italy During Early Pliocene

DING Xiao-hui, WANG Ru-jian, LI Jian-ru, HUANG En-qing   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2007-09-02 Revised:2007-09-04 Online:2007-10-15 Published:2007-10-10

主要研究了意大利上新统3个剖面Punta Piccola、Cape Spertivento以及Punta Rossello蛋白石含量的变化,综合其它古环境指标对非洲季风和地中海表层生产力加以分析,研究表明,Punta Piccola剖面和Cape Spertivento剖面各古环境指标对岁差周期影响的响应明显而单纯,即岁差低值,对应氧同位素偏负,有机碳和蛋白石高值以及碳酸盐低值,说明地中海表层生产力明显受到岁差的驱动。岁差驱动下的北非夏季风导致尼罗河泛滥,带来的丰富营养元素使得生产力剧增,同时淡水注入,阻碍了水体的垂向交换,直接导致了海底的缺氧环境,硅藻利用深层营养产生勃发,并组成“藻席”,快速沉降到海底,使得有机碳迅速埋葬和保存,从而引发了腐泥层的形成。Punta Rossello剖面硅藻层证实了“藻席”的存在,但是蛋白石含量并不高。

We studied the variability of the African monsoon and the Mediterranean sea surface productivity during the early Pliocene based on the analysis of some paleoenvironment proxies such as planktonic foraminifera oxygen isotope and biogenic compositions ( carbonate, biogenic opal and organic carbon) in three profiles respectively, Punta Piccola, Cape Spertivento and Punta Rossello in southern Italy. Our results show that during the early Pliocene, the increase of the Northern Hemisphere summer insolation which is also presented as low precession value is usually correlated to organic carbon and opal increases, carbonate decrease and the negative excursions of stable oxygen isotope. The variability of the proxies implies the sea surface productivity controlled by the precession. Enhanced runoff induced by the strengthened African summer monsoon brings abundant terrestrial nutrients and fresh water into the Mediterranean sea, which conduces to productivity blooming and anoxic condition in the Mediterranean sea bottom. Furthermore, opal thrives herein by using deepnutrient, buildups mats and decline fleetly into sea bottom so that organic carbon is speedily buried and conserved, thus making the sapropels come into being. Diatom layers in Punta Rossello profile confirm the existence of mats, but the content of opal in some layers is not high.

中图分类号: 

[1]Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's orbit: Pacemaker of the ice age[J].Science,1976,194:1 121-1 132.
[2]Hilgen F J, Brinkhuis H, Zachariasse W J.Unit stratotypes for global stages:The Neogene perspective[J].Earth Science Reviews,2006,74:113-125.
[3]Rio D, Sprovieri R, Raffi I. Calcareous plankton biostratigraphy and biochronology of the Pliocene-Lower Pleistocene succession of the Capo Rossello area, Sicily[J]. Marine Micropaleontology,1984, 9:135-180.
[4]Langereis C G, Hilgen F J. The Rossello composite: A Mediterranean and global reference section for the Early to early Late Pliocene[J].Earth and Planetary Science Letters,1991,104:211-225.
[5]Rio D, Sprovieri R, Castradori D,et al.The Gelasian Stage (Upper Pliocene):A new unit of the global standard chronostratigraphic scale[J].Episodes,2000,23(3):82-87.
[6]Castradori D, Rio D, Hilgen F J,et al.The Global Standard Stratotype-section and Point (GSSP) of the Piacenzian Stage (Middle Pliocene)[J].Episodes,2000, 23(3):88-93.
[7]Van Couvering J A, Castradori D,Cita M B,et al.The base of the Zanclean Stage and of the Pliocene Series[J].Episodes,2000, 23(3):179-187.
[8]Rohling E J. Review and new aspects concerning the formation of eastern Mediterranean sapropels[J].Marine Geology,1994,22:1-28.
[9]Sachs J P, Repeta D J. Oligotrophy and nitrogen fixation during Eastern Mediterranean sapropel events[J].Science,1999, 286:2 485-2 488.
[10]Hilgen F J. Sedimentary rhythms and high-resolution chronostratigraphic correlations in the Medierranean Pliocene[J].Newslett Stratigraphy,1987,17:109-127.
[11]Rossignol-Stick M, Nesteroff V, Olive P,et al.After the deluge: Mediterranean stagnation and sapropel formation[J].Nature,1982, 295:105-110.
[12]Rossignol-Stick M. Africa monsoon, an immediate isotope response to orbital insolation[J].Nature,1983, 303:46-49.
[13]Hilgen F J, Langereis C G. Periodicities of CaCO3 cycles in the Mediterranean Pliocene: Discrepancies with the quasi-periods of the Earth's orbital cycles[J]. Terra Nova,1989,1:409-415.
[14]Vergnaud-Grazzini C, Devaux M, Znaidi J. Stable isotope “anomalies” in Mediterranean Pleistocene records[J].Marine Micropaleontology,1986, 10:35-69.
[15]Rohling E J, Gieskes W W C. Late Quaternary changes in Mediterranean intermediate water density and formation rate[J].Paleoceanography,1989,4(5):531-545.
[16]Kump A E S, Pearce R B, Koizumi I,et al.The role of mat-forming diatoms in the formation of Mediterranean sapropels[J].Nature,1999, 398:57-61.
[17]Mortlock P A, Froelich P N.A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J].Deep Sea Research,1989, 36(9):1 415-1 426
[18]Li Jian, Wang Rujian. Paleoproductivity variability of the northern south China sea during the past 1 Ma: The opal record from ODP site 1144[J].Acta Geologica Sinica,2004,(2):228-234.[李建,王汝建.南海北部一百万年以来的表层古生产力变化:来自ODP1144站的蛋白石记录[J].地质学报,2004,(2):228-234.]
[19]Paillard D, Labeyrie L,Yiou P. Macintosh program performs time series analysis[J].EOS Transaction, AGU,1996,77:379.
[20]Schulz M, Mudelsee M. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time Series[J].Computer & Geoscience,2002, 28:421-426.
[21]Hilgen F J. Astronomical forcing and geochronological application of sedimentary cycles in the Mediterranean Pliocene-Pleistocene[D].Geologica Ultraiectina. Mededelingen van de Faculteit Aardwetenschappen der Universiteit Utrecht, 1991,93:1-139.
[22]Li Jianru. Carbon reservoir in low-latitude oceans and orbital cycles of monsoon climate[D].Shanghai: School of Ocean and Earth Science in Tongji University, 2007:1-61.[李建如.低纬海区碳储库与季风气候的轨道周期[D].上海:同济大学海洋与地球科学学院, 2007:1-61.]
[23]Castradori D, Rio D, Hilgen F J, et al.The Global Standard Stratotype-section and Point(GSSP) of the Piacenzian Stage (Middle Pliocene)[J].Episodes,2000, 23(3):88-93.
[24]Van Couvering J A, Castradori D, Cita M B,et al. The base of the Zanclean stage and of the Pliocene series[J].Episodes,2000,23(3):179-187.
[25]Laskar J. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones[J].Icarus,1990,88:266-291.
[26]Laskar J, Joutel F, Boudin F. Orbital, precessional, and insolation quantities for the Earth from -20 Ma to +10 Ma[J].Astrophysical Journal,1993, 270:522-533.
[27]Huang Enqing, Tian Jun. Early Pliocene Precession rhythm of African monsoon and Mediterranean sea surface productivity[J].Earth Science—Jounal of China University of Geosciences,2007,32(3):313-321.[黄恩清,田军.早上新世非洲季风与地中海表层生产力变化的岁差节律[J].地球科学——中国地质大学学报,2007,32(3):313-321.]
[28]Howell M W, Thunell R C. Organic carbon accumulation in Bannock Badin: Evaluating the role of productivity in the formation of eastern Mediterranean sapropels[J]. Marine Geology,1992,103:461-471.
[29]Sancetta C.Mediterranean sapropels:Seasonal stratification yields high production and carbon flux[J].Paleoceanography,1994,9(2):195-196.
[30]Stax R, Stein R. Long-term changes in the accumulation of organic carbon in Neogene sediments, Ontong Java plateau[R]. Proceedings of the Ocean Drilling Programm College Station, TX, 1993:573-579.
[31]Calvert S E, Nielsen B, Fontugne M R. Evidence from nitrogen isotope ratios for enhanced productivity during the formation of eastern Mediterranean sapropels[J].Nature,1992, 359:223-225.
[32]Van Os B J H, Lourens L J, Hilgen F J,et al.The formation of Pliocene sapropels and carbonate cycles in the Mediterranean: Diagenesis, dilution, and productivity[J].Paleoceanography,1994,9:601-617.
[33]Richard C D, Frances P W, Hans J M. The role of a silicate pump in driving new production[J].Deep Sea Research Part I: Oceanographic Research Papers,1995, 42(5):697-719.
[34]Hurd D E. Interactions of biogenic opal, sediment and seawater in central equatorial Pacific[J].Geochimica et Cosmochimica Acta,1973,37:2 257-2 282.
[35]Harrison K G. Role of increased marine silica input on paleo-PCO2 levels[J].Paleoceanography,2000,15:292-298.

[1] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[2] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[3] 赵玉龙, 刘志飞. 等积体在全球大洋中的空间分布及其古环境意义——国际大洋钻探计划对全球等深流沉积研究的贡献[J]. 地球科学进展, 2017, 32(12): 1287-1296.
[4] 李丽, 徐沁. 上新世以来巽他陆架海平面变化研究[J]. 地球科学进展, 2017, 32(11): 1126-1136.
[5] 戴静,孙柏年,解三平,吴靖宇,李娜. 云南腾冲上新统 Carpinus miofangiana的发现及古气候意义[J]. 地球科学进展, 2009, 24(9): 1024-1032.
[6] 陈木宏. 国际综合大洋钻探计划IODP323白令海航次介绍[J]. 地球科学进展, 2009, 24(12): 1352-1356.
[7] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
[8] 任景玲;张经;刘素美. 以Al/Ti比值为地球化学示踪剂反演海洋古生产力的研究进展[J]. 地球科学进展, 2005, 20(12): 1314-1320.
[9] 孙航,李志敏. 古地中海植物区系在青藏高原隆起后的演变和发展[J]. 地球科学进展, 2003, 18(6): 852-862.
阅读次数
全文


摘要