地球科学进展 ›› 2007, Vol. 22 ›› Issue (10): 997 -1004. doi: 10.11867/j.issn.1001-8166.2007.10.0997

综述与评述 上一篇    下一篇

基于孔隙网络模型的非水溶相液体运移实验研究进展
陈家军,杨 建,田 亮   
  1. 环境模拟与污染控制国家重点联合实验室,北京师范大学环境学院,北京 100875
  • 收稿日期:2007-04-23 修回日期:2007-08-20 出版日期:2007-10-15
  • 通讯作者: 陈家军(1962-),男,黑龙江绥滨人,教授,主要从事环境模拟与污染治理研究.E-mail: jeffchen@bnu.edu.cn E-mail:jeffchen@bnu.edu.cn
  • 基金资助:

    教育部重点基金项目“多孔介质污染物运移网络模拟研究”(编号:104012);国家自然科学基金项目“包气带土壤轻质油污染及治理中多相流研究”(编号:40272107)共同资助.

Advances in NAPLs Transport Experiment in Porous Media Based on Pore Network Model

CHEN Jia-jun, YANG Jian, TIAN Liang   

  1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875,China
  • Received:2007-04-23 Revised:2007-08-20 Online:2007-10-15 Published:2007-10-10

进行多孔介质中非水溶相液体(Non-Aqueous Phase Liquids,NAPLs)运移的微观机理研究,微观孔隙网络模型实验是目前应用比较广泛且行之有效的方法。通过网络模型实验,获得对NAPLs在多孔介质中运移更深入的认识。从多孔介质孔隙结构测量、孔隙网络模型制作、NAPLs运移网络模型实验和数值模拟4个方面评述了该方向的研究进展,结果显示测量孔隙结构方法、图像刻蚀技术、可视化测量实验数据方法等有力地促进了本实验研究的发展。分析了孔隙网络模型实验存在的问题以及未来的发展趋势,对开展孔隙网络模型实验研究有一定的启发作用。

Pore network model is a widely used and high efficient method in the study of the micro-mechanism of Non-aqueous phase liquids (NAPLs) transport in porous medium.Although pore network model experiment can give us get more knowledge about NAPLs transport in porous media, there are still many unknown aspects and unsolved problems. This paper describes the advances in NAPLs transport experiment in porous media based on pore network model. The relative reports consist of four parts, i.e., measuring pore structure of porous medium, fabricating pore network model, NAPLs transport experiment in network model and numerical simulation of NAPLs transport experiment. Through analyzing the literatures that are relation to pore network model experiments, we find some new technologies making good progress of network model experiment, such as advanced measuring technology of pore structure, image etching technology and visualization measuring method. In the end, the existing problems and development direction of pore network model experiment are analyzed, which may be useful for future research of NAPLs transport experiment in porous media based on pore network model.

中图分类号: 

[1]Khachikian C, Harmon T C. Nonaqueous phase liquid dissolution in porous media: Current state of knowledge and research needs[J]. Transport in Porous media, 2000,38: 3-28.
[2]Yortsos Y C, Stubos A K. Phase change in porous media[J]. Current Opinion Colloid & Interfaces, 2001,6: 208-216.
[3]Tsakiroglou C D, Payatakes A C. Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation[J]. Advances in Water Resources, 2000,23: 773-789.
[4]Wang jinxun. Pore scale network model was used to research the percolating law of two phase liquids[D].Beijing: Exploration & Productien Research Institute,2001.[王金勋, 应用孔隙水平网络模型研究两相渗流规律[D].北京:中国石油勘探开发研究院, 2001.]
[5]Berryman J G, Blair S C. Kozeny-Carman relations and image processing methods for estimating Darcy’s constant[J]. Journal of Application Physics, 1987,62: 2 221-2 228.
[6]Davies S, Kalam M Z, Packer K J, et al. Pore-size distributions from nuclear magnetic resonance spin-lattice relaxation measurements of fluid-saturated porous solids: II. Applications to reservoir core samples[J]. Journal of Applied Physics,1990,67:3 171-3 176.
[7]Coker D A, Torquato S, Dunsmoir J H. Morphology and physical properties of Fontainebleau sandstone via tomographic analysis[J]. Journal of Geophysical Research, 1996,101:497-506.
[8]Ren P E, Bakke S. Reconstruction of Berea sandstone and pore-scale modelling of wettability effects[J]. Journal of Petroleum Science and Engineering, 2003,39:177-199.
[9]Chatenever A, Calhoun J C. Visual examinations of fluid behavior in porous media: Part I. Petroleum transaction[J]. AIME,1952,195: 149-156.
[10]Mattax C C, Kyte J R. Ever see a water flood?[J]. Oil and Gas Journal, 1961,59: 115-128.
[11]Davis J A, Jones S C. Displacement mechanisms of residual solutions[J]. Journal of Petroleum Technology, 1968,20: 1 415-1 428.
[12]Buckley J S. Multiphase displacements in micromodels[C]//Morrow N R, ed. Interfacial Phenomena in Petroleum Recovery.New York: Marcel Dekker, 1992: 17-189.
[13]Theodoropoulou M A, Karoutsos V, Kaspiris C, et al. A new visualization technique for the study of solute dispersion in model porous media[J]. Journal of Hydrology,2003,274: 176-197.
[14]Lu T X, Biggar J W, Nielsen D R. Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis[J]. Water Resources Research, 1994,30:3 275-3 281.
[15]Kennedy C A, Lennox W C. A pore-scale investigation of mass transport from dissolving DNAPL ganglia[J]. Journal of Contaminant Hydrology, 1997,24: 221-246.
[16]Corapcioglu M Y, Fedirchuk P. Glass bead micromodel study of solute transport[J].Journal of Contaminant Hydrology, 1999,36: 209-230.
[17]Jia C, Shing K, Yortsos Y C. Visualization and simulation of non-aqueous phase liquids solubilization in pore networks[J]. Journal of Contaminant Hydrology, 1999,35: 363-387.
[18]Conrad S H, Wilson J L, Mason W R, et al. Visualization of residual organic liquids trapped in aquifers[J]. Water Resources Research, 1992,28: 467-478.
[19]Morrow N R, Lim H T, Ward J S. Effect of crude-oil-induced wettability changes on oil recovery[R]. SPE Formation Evaluation,1986,Feb.89-103.
[20]Soll W E, Celia M A, Wilson J L. Micromodel studies of three-fluid porous media systems: Pore-scale processes relating to capillary pressure-saturation relationships[J]. Water Resources Research,1993,29: 2 963-2 974.
[21]Wan J, Wilson J L. Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media[J]. Water Resources Research, 1994,30: 11-23.
[22]Corapcioglu M Y, Chowdhury S, Roosevelt S E. Micromodel visualization and quantification of solute transport in porous media[J]. Water Resources Research,1997,33(11): 2 547-2 558.
[23]Theodoropoulou M A, Sygouni V, Karoutsos V, et al. Relative permeability and capillary pressure functions of porous media as related to the displacement growth pattern [J]. International Journal of Multiphase Flow,2005,31:1 155-1 180.
[24]Tsakiroglou C D, Theodoropoulou M, Karoutsos V,et al. Experimental study of the immiscible displacement of shear-thinning fluids in pore networks[J]. Journal of Colloid and Interface Science, 2003,267: 217-232.
[25]Bear J. Dynamics of Fluid in Porous Media[M].Li Jingsheng, Chen Chongxi, translated.Beijing: Chinese Architecture Press,1983.[贝尔 J.多孔介质流体动力学[M].李竟生,陈崇希译.北京:中国建筑工业出版社,1983.]
[26]Campbell B T, Orr F M. Flow visualization for CO2/crude-oil displacement[J]. Society of Petroleum Engineers Journal,1985,25: 665-678.
[27]Sugita F, Gillam R W. Pore scale variation in retardation factor as a cause of non-ideal reactive breakthrough curves[J].Water Resources Research,1995,31: 103-112.
[28]Egbogah E O, Dawe R A. Microvisual studies of size distribution of oil droplets in porous media [J].Bulletin of Canadian Petroleum Geology,1980,28: 200-203.
[29]Chatzis I, Morrow N, Lim H T. Magnitude and detailed structure of residual oil saturation[J].Society of Petroleum Enginneers Journal,1983,23(2): 311-326.
[30]Conrad S H, Wilson J L, Mason W R,et al. Visualization of residual organic liquids trapped in aquifers[J].Water Resources Research,1992,28: 467-478.
[31]Jeong S W, Corapcioglu M Y. A micromodel analysis of factors influencing NAPL removal by surfactant foam flooding[J].Journal of Contaminant Hydrology,2003,60: 77-96.
[32]Jeong S W, Corapcioglu M Y. Force analysis and visualization of NAPL removal during surfactant-related floods in a porous medium[J].Journal of Hazardous Materials A,2005,126: 8-13.
[33]Sharmin R, Loannidis M A, Legge R L. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium[J].Journal of Contaminant Hydrology,2006,82: 145-164.
[34]Sahloul N A, Ioannidis M A, Chatzis I. Dissolution of residual non-aqueous phase liquids in porous media: Pore-scale mechanisms and mass transfer rates[J]. Advances in Water Resources,2002,25: 33-49.
[35]Coutelieris F A, Kainourgiakis M E, Stubos A K, et al. Multiphase mass transport with partitioning and inter-phase transport in porous media [J]. Chemical Engineering Science, 2006,61: 4 650-4 661.
[36]Hadad A, Bensabat J, Rubin H. Simulation of immiscible multiphase flow in porous media: A focus on the capillary fringe of oil-contaminated aquifers [J]. Transport in Porous Media,1996,22(3): 245-269.
[37]Blunt M J. Physically-based network modeling of multiphase flow in intermediate-wet porous media[J]. Journal of Petroleum Science and Engineering,1998,20: 117-125.
[38]Tsakiroglou C D. A methodology for the derivation of non-Darcian models for the flow of generalized Newtonian fluids in porous media [J]. Journal of Non-Newtonian Fluid Mechanics,2002,105: 79-110.
[39]Tsakiroglou C D. Correlation of the two-phase flow coefficients of porous media with the rheology of shear-thinning fluids [J].Journal of Non-Newtonian Fluid Mechanics,2004,117: 1-23.
[40]Juanes R. A variational multiscale finite element method for multiphase flow in porous media[J].Finite Elements in Analysis and Design,2005,41:763-777.
[41]Edwards D A, Luthy R G, Liu Z. Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions[J].Environmental Science and Technology,1991,25: 127-133.
[42]Renardy Y Y, Renardy M, Cristini V. A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio[J].European Journal of Mechanics,2002,21: 49-59.
[43]Naire S, Braun R J, Snow S A. A 2+1 dimensional insoluble surfactant model for a vertical draining free film[J].Journal of Computational and Applied Mathematics, 2004,166:385-410.

[1] 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用[J]. 地球科学进展, 2020, 35(10): 1087-1098.
[2] 胡毅,丁见祥,房旭东,王立明,刘伯然,李海东. 基于水下文物控制实验的海洋地球物理声学研究进展[J]. 地球科学进展, 2019, 34(10): 1081-1091.
[3] 曾献棣, 唐红, 李雄耀, 欧阳自远, 王世杰. 月表太阳风成因水的研究现状和意义[J]. 地球科学进展, 2018, 33(5): 473-482.
[4] 樊瑞静, 李生宇, 周杰, 王海峰. 不同外形粗糙元覆盖沙床面抗风蚀效益的风洞模拟实验[J]. 地球科学进展, 2017, 32(1): 83-89.
[5] 王水龙, 尚林波, 毕献武, 樊文苓. 硅酸盐熔体和流体中金的性质及行为研究进展[J]. 地球科学进展, 2014, 29(6): 683-690.
[6] 曲长伟,张 霞,林春明,陈顺勇,李艳丽,潘峰,姚玉来. 杭州湾地区晚第四纪浅层生物气藏盖层物性封闭特征[J]. 地球科学进展, 2013, 28(2): 209-220.
[7] 卜文瑞,李 力,朱爱美,张 辉,张 俊,崔菁菁. 海底蚀变玄武岩中次生组分去除实验研究[J]. 地球科学进展, 2012, 27(10): 1167-1172.
[8] 欧阳杰,朱诚,彭华,胡智农,俞锦标,王海昀,吕文,徐龙生. 湖南崀山丹霞地貌岩体抗酸侵蚀脆弱性的实验研究[J]. 地球科学进展, 2011, 26(9): 965-970.
[9] 李丽敏,刘祥文,谢战军.  大陆下地壳麻粒岩的流变学研究进展[J]. 地球科学进展, 2011, 26(3): 275-285.
[10] 焦若鸿,许长海,张向涛,阙晓铭. 锆石裂变径迹(ZFT)年代学:进展与应用[J]. 地球科学进展, 2011, 26(2): 171-182.
[11] 高抒,全体船上科学家. IODP 333航次:科学目标、钻探进展与研究潜力[J]. 地球科学进展, 2011, 26(12): 1290-1299.
[12] 龚建华,周洁萍,张利辉. 虚拟地理环境研究进展与理论框架[J]. 地球科学进展, 2010, 25(9): 915-926.
[13] 王介民, 王维真, 刘绍民, 马明国, 李新. 近地层能量平衡闭合问题—综述及个例分析[J]. 地球科学进展, 2009, 24(7): 705-714.
[14] 张建勇,刘文汇,腾格尔,王晓锋,卿颖,马凤良. 硫化氢形成与C 2+气态烷烃形成的同步性研究——几个模拟实验的启示[J]. 地球科学进展, 2008, 23(4): 390-400.
[15] 蔡春芳;李宏涛. 沉积盆地热化学硫酸盐还原作用评述[J]. 地球科学进展, 2005, 20(10): 1100-1105.
阅读次数
全文


摘要