地球科学进展 ›› 2018, Vol. 33 ›› Issue (10): 1024 -1033. doi: 10.11867/j.issn.1001-8166.2018.10.1024.

综述与评述 上一篇    下一篇

海洋沉积物有机质赋存的多样性与物源指标的多疑性综述
韦海伦 1( ), 蔡进功 1, *( ), 王国力 2, 王学军 3   
  1. 1.同济大学海洋地质国家重点实验室,上海 200092
    2.中国石油化工股份有限公司科技部,北京 100086
    3.中国石化胜利油田分公司勘探开发研究院,山东 东营 257015
  • 收稿日期:2018-06-07 修回日期:2018-09-08 出版日期:2018-10-10
  • 通讯作者: 蔡进功 E-mail:2010weihailun@tongji.edu.cn;jgcai@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目“泥页岩中不同赋存态烃的分离及特征研究”(编号:41672115);同济大学海洋地质国家重点实验室自主课题探索项目“东海沉积物各类型有机质的来源与保存机制研究”(编号:MG20170201)资助.

The Diversity of Organic Matter in Marine Sediments and the Suspiciousness of Source Parameters: A Review

Hailun Wei 1( ), Jingong Cai 1, *( ), Guoli Wang 2, Xuejun Wang 3   

  1. 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
    2. Science and Technology Institute, China Petroleum & Chemical Corporation, Beijing 100086, China;
    3. Exploration and Development Institute of Shengli Oilfield Company, Sinopec, Shandong Dongying 257015,China
  • Received:2018-06-07 Revised:2018-09-08 Online:2018-10-10 Published:2018-11-16
  • Contact: Jingong Cai E-mail:2010weihailun@tongji.edu.cn;jgcai@tongji.edu.cn
  • About author:

    First author:Wei Hailun(1991- ), male, Du'an County, Guangxi Province, Ph.D student. Research areas include distribution and source of organic matter in marine sediment and carbon cycle of the ocean. E-mail: 2010weihailun@tongji.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China "Research on the separation and characteristics of different occurrence state hydrocarbon in shale"(No.41672115);Independent Subject of State Key Laboratory of Marine Geology, Tongji University "Research on the source and preservation mechanism of sedimentary organic matter of East China Sea"(No.MG20170201).

海洋沉积物中有机质类型多样,准确判断有机质的来源具有重要的意义。前人通常的研究方法包括元素比(C/N)、稳定同位素(δ13C)和生物标志物(BIT)等,都以全样作为对象,通过各自的海陆端元值计算比例。然而,有机质通过抗降解性或与无机矿物结合等不同方式保存,其差异导致各自的参数值发生变化。经过重力等作用下分异沉积后,不同保存方式的有机质便会富集或分散,使得有些指标在某区域失真甚至失去意义。由此可知,全样测得的有机质各参数值受其来源和保存方式共同影响,不考虑保存方式而直接使用这些指标来研究有机质来源便具有不可靠性。基于此,提出粒级分离的方法,将不同性质和保存方式的沉积物分离,并根据具体粒级的有机质组成和特征,使用相应的指标及端元值,得到更准确的有机质来源比例。这对认识有机质的产生、聚集、赋存、运移、沉积和演化等整个碳循环过程具有深刻意义。

There are various types of Organic Matter (OM) in marine sediments, and it is of great significance to accurately estimate the source of them. The methods used in most researches include element ratio (C/N), stable isotopes (δ13C) and biomarkers (BIT), all of which are used for the whole sample as objects and calculated by end-member of terrestrial and marine source OM, respectively. However, OM is preserved in different ways, such as on its own recalcitrance or combining with inorganic minerals. Preservation differences make their respective parameter values change. After differential sedimentary by gravity or other factors,different preservation types of OM are enriched or dispersed, making some parameters distorted and even meaningless in some areas. Therefore, the parameters of OM measured by the whole sample are influenced by the source of OM and the way of deposition and preservation. Therefore, it is unreliable to use these parameters to study the source of OM without considering the way of preservation. Based on this, this paper put forward a method of particle separation to separate the sediment in different propertied and preservation types. According to the composition and characteristics of the OM at the specific grain level, the corresponding index and end-members value were used to calculate more accurate proportion of the OM. It is of profound significance to understand the production, aggregation, occurrence, migration and deposition of OM and its evolution in the entire carbon cycle.

中图分类号: 

表1 有机质来源参数的异同
Table 1 Differences and similarities of different source parameters of organic matter
图1 Branched GDGTs和crenarchaeol的结构及利用HPLC-MS单离子扫描的 m/z[ 49 ]
Fig.1 Structures of Branched GDGTs and crenarcheol, as well as their m/z values for SIM HPLC-MS analyses [ 49 ]
图2 bGDGTs分别与OC、黏土含量和沉积物中值粒径的变化关系(数据来源于参考文献[ 52 ])
Fig.2 The relationship between bGDGTs and OC, clay content, median grain size, respectively (data from reference[52])
[1] Druffel E R M, Williams P M, Bauer J E, et al. Cycling of dissolved and particulate organic matter in the open ocean[J]. Journal of Geophysical Research Oceans, 1992, 97(C10): 15 639-15 659.
doi: 10.1029/92JC01511     URL    
[2] Hare A A, Kuzyk Z Z A, Macdonald R W, et al. Characterization of sedimentary organic matter in recent marine sediments from Hudson Bay, Canada, by Rock-Eval pyrolysis[J]. Organic Geochemistry, 2014, 68: 52-60.
doi: 10.1016/j.orggeochem.2014.01.007     URL    
[3] Ren Chengzhe, Yuan Huamao, Song Jinming, et al. Amino sugars and their indicating role in the cycling of organic matter in marine environment[J]. Advances in Earth Science, 2017, 32(9): 959-971.
[任成喆, 袁华茂, 宋金明, 等. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.]
doi: 10.11867/j.issn.1001-8166.2017.09.0959     URL    
[4] Ridgwell A, Zeebe R E.The role of the global carbonate cycle in the regulation and evolution of the Earth system[J]. Earth & Planetary Science Letters, 2005, 234(3/4): 299-315.
doi: 10.1016/j.epsl.2005.03.006     URL    
[5] Burdige D J.Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467-485.
doi: 10.1021/cr050347q     URL    
[6] Hedges J I, Keil R G, Benner R.What happens to terrestrial organic matter in the ocean?[J]. Marine Chemistry, 1997, 27(5/6): 195-212.
doi: 10.1016/j.marchem.2004.06.033     URL    
[7] Mikutta R, Kleber M, Torn M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance?[J]. Biogeochemistry, 2006, 77(1): 25-56.
doi: 10.1007/s10533-005-0712-6     URL    
[8] Turner J T.Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump[J]. Progress in Oceanography, 2015, 130: 205-248.
doi: 10.1016/j.pocean.2014.08.005     URL    
[9] Ding Xiaoling, Henrichs M.Adsorption and desorption of proteins and polyamino acid by clay minerals and marine sediments[J]. Marine Chemistry, 2002, 77: 225-237.
doi: 10.1016/S0304-4203(01)00085-8     URL    
[10] Krishna M S, Naidu S A, Subbaiah C V, et al. Sources, distribution and preservation of organic matter in a tropical Estuary (Godavari, India)[J]. Estuaries & Coasts, 2015, 38(3): 1 032-1 047.
doi: 10.1007/s12237-014-9859-5     URL    
[11] Albuquerque A L S, Mozeto A A. C∶ N∶ P ratios and stable carbon isotope compositions as indicators of organic matter sources in a riverine wetland system (Moji-guaçu River, São Paulo-Brazil)[J].Wetlands, 1997, 17(1): 1-9.
doi: 10.1007/BF03160713     URL    
[12] Hopmans E C, Weijers J W H, Schefu β E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth & Planetary Science Letters, 2004, 224(1): 107-116.
doi: 10.1016/j.epsl.2004.05.012     URL    
[13] Ramaswamy V, Gaye B, Shirodkar P V, et al. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea[J]. Marine Chemistry, 2008, 111(3/4): 137-150.
doi: 10.1016/j.marchem.2008.04.006     URL    
[14] Yang Liyang, Wu Ying, Zhang Jing, et al. Distribution of lignin and sources of organic matter in surface sediments from the adjacent area of the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2008, 30(5): 35-42.
[杨丽阳, 吴莹, 张经, 等. 长江口邻近陆架区表层沉积物的木质素分布和有机物来源分析[J]. 海洋学报, 2008, 30(5): 35-42.]
doi: 10.3321/j.issn:0253-4193.2008.05.006     URL    
[15] Wang Runmei, Tang Jianhui, Huang Guopei, et al. Provenance of organic matter in estuarine and marine surface sediments around the Bohai Sea[J]. Oceanologia et Limnologia Sinica, 2015, 46(3): 497-507.
[王润梅, 唐建辉, 黄国培, 等. 环渤海地区河流河口及海洋表层沉积物有机质特征和来源[J]. 海洋与湖沼, 2015, 46(3): 497-507.]
doi: 10.11693/hyhz20140800225     URL    
[16] Lehmann M F, Bernasconi S M, Barbieri A, et al. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis[J]. Geochimica et Cosmochimica Acta, 2002, 66(20): 3 573-3 584.
doi: 10.1016/S0016-7037(02)00968-7     URL    
[17] Prasad V, Garg R, Singh V, et al. Organic matter distribution pattern in Arabian Sea: Palynofacies analysis from the surface sediments off Karwar coast (west coast of India)[J]. Systematic & Applied Microbiology, 2007, 20(3): 492-503.
[18] Satterberg J, Arnarson T S, Lessard E J, et al. Sorption of organic matter from four phytoplankton species to montmorillonite, chlorite and kaolinite in seawater[J]. Marine Chemistry, 2003, 81(1): 11-18.
doi: 10.1016/S0304-4203(02)00136-6     URL    
[19] Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate organic material in the Amazon River[J]. Limnology & Oceanography, 1986, 31(4): 717-738.
doi: 10.4319/lo.1986.31.4.0717     URL    
[20] Hedges J I, Cowie G L, Richey J E, et al. Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids[J]. Limnology & Oceanography, 1994, 39(4): 743-761.
doi: 10.4319/lo.1994.39.4.0743     URL    
[21] Avneri-Katz S, Young R B, McKenna A M,et al. Adsorptive fractionation of Dissolved Organic Matter (DOM) by mineral soil: Macroscale approach and molecular insight[J]. Organic Geochemistry, 2017, 103: 113-124.
doi: 10.1016/j.orggeochem.2016.11.004     URL    
[22] Duan Yi.Marine and Marsh Sedimentary Organic Geochemistry[M]. Beijing: Science Press, 2008.
[段毅. 海洋和沼泽沉积有机地球化学[M]. 北京:科学出版社,2008.]
[23] Macquaker J H S, Keller M A, Davies S J. Algal Blooms and "Marine Snow": Mechanisms that enhance preservation of organic carbon in Ancient Fine-Grained Sediments[J]. Journal of Sedimentary Research, 2010, 80(11): 934-942.
doi: 10.2110/jsr.2010.085     URL    
[24] Sugai S, Henrichs S.Rates of amino acid uptake and mineralization in Resurrection Bay (Alaska) sediments[J]. Marine Ecology Progress, 1992, 88(2/3): 129-141.
doi: 10.3354/meps088129     URL    
[25] Tang Jianhua, He Qing, Wang Yuanye, et al. Study on in-situ flocs size in turbidity maximum of the Changjiang Estuary[J]. Journal of Sediment Research, 2008, (2): 27-33.
[唐建华, 何青, 王元叶, 等. 长江口浑浊带絮凝体特性[J]. 泥沙研究, 2008, (2): 27-33.]
[26] Jiang T, Skyllberg U, Björn E, et al. Characteristics of Dissolved Organic Matter (DOM) and relationship with dissolved mercury in Xiaoqing River-Laizhou Bay Estuary, Bohai Sea, China[J]. Environmental Pollution, 2017, 223: 19-30.
doi: 10.1016/j.envpol.2016.12.006     URL     pmid: 28131480
[27] Zhu Chun, Pan Jianming, Lu Bing, et al. Compositional feature of n-alkanes in modern sediment from the Changjiang Estuary and adjacent area and its implication to transport and distribution of organic carbon[J]. Acta Oceanologica Sinica, 2005, 27(4): 59-67.
[朱纯, 潘建明, 卢冰, 等. 长江口及邻近海域现代沉积物中正构烷烃分子组合特征及其对有机碳运移分布的指示[J]. 海洋学报, 2005, 27(4): 59-67.]
doi: 10.3321/j.issn:0253-4193.2005.04.008     URL    
[28] Wang Min.The Distribution Characteristic of Lignin and Its Indication for Terrigenous Organic Matters in Sediments from Mud Areas of the East China Sea[D]. Shandong: Ocean University of China,2013.
[王敏. 东海泥质区沉积物中木质素的分布特征及其对陆源有机物的指示作用[D]. 山东:中国海洋大学,2013.]
[29] Hu Limin, Guo Zhigang, Feng Jialiang, et al. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China[J]. Marine Chemistry, 2009, 113(3): 197-211.
doi: 10.1016/j.marchem.2009.02.001     URL    
[30] Andrews J E, Greenaway A M, Dennis P F.Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts bay, Kingston Harbour, Jamaica[J]. Estuarine Coastal & Shelf Science, 1998, 46(5): 743-756.
doi: 10.1006/ecss.1997.0305     URL    
[31] Ge Tiantian.Multi-proxy Records of Terrestrial and Marine Organic Matter Sources and Burial in Marginal Sea Sediment over Different Time Scale[D]. Shandong: Ocean University of China, 2013.
[葛田田. 边缘海不同时间尺度有机质来源变化的多参数指标研究[D]. 山东:中国海洋大学, 2013.]
[32] Jia Guodong, Peng Ping'an. Organic biogeochemistry and past global change[J]. Earth Science Frantiers, 2005, 12(2): 179-187.
[贾国东, 彭平安. 有机生物地球化学与晚新生代古全球变化研究[J]. 地学前缘, 2005, 12(2): 179-187.]
doi: 10.3321/j.issn:1005-2321.2005.02.020     URL    
[33] Peterse F, Eglinton T I.Grain size associations of branched tetraether lipids in soils and riverbank sediments: Influence of hydrodynamic sorting processes[J]. Frontiers in Earth Science, 2017, 5(49): 1-8.
[34] Peterson B J.Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review[J]. Acta Oecologica, 1999, 20(4): 479-487.
doi: 10.1016/S1146-609X(99)00120-4     URL    
[35] Gontharet S, Mathieu O, Lévêque J, et al. Distribution and sources of bulk Organic Matter (OM) on a tropical intertidal mud bank in French Guiana from elemental and isotopic proxies[J]. Chemical Geology, 2014, 376(22): 1-10.
doi: 10.1016/j.chemgeo.2014.03.009     URL    
[36] Ogrinc N, Fontolan G, Faganeli J, et al. Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): Indicators of sources and preservation[J]. Marine Chemistry, 2005, 95(3): 163-181.
doi: 10.1016/j.marchem.2004.09.003     URL    
[37] Cai Deling, Shi Xuefa, Zhou Weijian, et al. Sources and transportation of suspended matter and sediment in the southern Yellow Sea: Evidence from stable carbon isotopes[J]. Chinese Science Bulletin, 2003, 48(Suppl.1): 21-29.
doi: 10.1007/BF02900936     URL    
[38] Ran Lishan, Lu X X, Sun Huiguo, et al. Spatial and seasonal variability of organic carbon transport in the Yellow River, China[J]. Journal of Hydrology, 2013, 498: 76-88.
doi: 10.1016/j.jhydrol.2013.06.018     URL    
[39] Wang Xuchen, Ma Haiqing, Li Ronghua, et al. Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze) River[J]. Global Biogeochemical Cycles, 2012, 26(2).DOI.10.1029/2011GB004130.
doi: 10.1029/2011GB004130     URL    
[40] Quirós-Collazos L, Pedrosa-Pàmies R, Sanchez-Vidal A, et al. Distribution and sources of organic matter in size-fractionated nearshore sediments off the Barcelona City (NW Mediterranean)[J]. Estuarine Coastal & Shelf Science, 2017, 189:267-280.
doi: 10.1016/j.ecss.2017.03.004     URL    
[41] Zhang Ling.A Study on the Distribution, Origin and the Early Diagenesis of Organic Matter on Pearl River Estuary and Adjacent Shelf[D]. Guangdong: Graduate School of Chinese Academy of Sciences, 2006.
[张凌. 珠江口及近海沉积有机质的分布、来源其早期成岩作用研究[D]. 广东:中国科学院研究生院, 2006.]
[42] Cifuentes L A, Coffin R B, Solorzano L, et al. Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary[J]. Estuarine Coastal & Shelf Science, 1996, 43(6): 781-800.
doi: 10.1006/ecss.1996.0103     URL    
[43] Chao Haijuan, Gao Jianhua, Jia Jianjun, et al. Change of organic matter sources in surface sediments over Changjiang Estuary and its adjacent waters[J]. Marine Environmental Science, 2017, 36(2): 237-242.
[晁海娟, 高建华, 贾建军, 等. 长江口及其邻近海域表层沉积物的有机质物源变化分析[J]. 海洋环境科学, 2017, 36(2): 237-242.]
[44] Lu Yafang.Community Dynamics of Phytoplankton in Frequent Redtide Area of East China Sea in Spring[D]. Fujian: Xiamen University, 2012.
[卢亚芳. 东海赤潮高发区春季浮游植物群落结构研究[D]. 福建:厦门大学, 2012.]
[45] Wang Lisha, Shi Xiaoyong, Zhang Chuansong.Distribution and origins of organic carbon and organic nitrogen in ECS sediments of high frequency HABs areas[J]. Marine Environmental Science, 2010, 29(2): 165-169.
[王丽莎, 石晓勇, 张传松. 东海赤潮高发区沉积物中有机碳、有机氮的分布及其来源[J]. 海洋环境科学, 2010, 29(2): 165-169.]
doi: 10.3969/j.issn.1007-6336.2010.02.001     URL    
[46] Wakeham S G, Canuel E A.Degradation and Preservation of Organic Matter in Marine Sediments[M]. Heidelberg: Springer Berlin,2006.
[47] Zhang Mingliang, Jiang Meijie, Fu Xiang, et al. The source of organic matter in the sediment of Laizhou Bay[J]. Oceanologia et Limnologia Sinica, 2014, 45(4): 741-746.
[张明亮, 姜美洁, 付翔, 等. 莱州湾沉积物有机质来源[J]. 海洋与湖沼, 2014, 45(4): 741-746.]
doi: 10.11693/hyhz20130315001     URL    
[48] Guo Wei, Ye Feng, Xu Shendong, et al. Seasonal variation in sources and processing of particulate organic carbon in the Pearl River Estuary, South China[J]. Estuarine Coastal & Shelf Science, 2015, 167: 540-548.
doi: 10.1016/j.ecss.2015.11.004     URL    
[49] Bechtel A, Smittenberg R H, Bernasconi S M, et al. Distribution of branched and isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake: Insights into sources and GDGT—Based proxies[J]. Organic Geochemistry, 2010, 41(8): 822-832.
doi: 10.1016/j.orggeochem.2010.04.022     URL    
[50] Powers L A, Werne J P, Johnson T C, et al. Crenarchaeotal membrane lipids in lake sediments: A new paleotemperature proxy for continental paleoclimate reconstruction?[J]. Geology, 2004, 32(7): 613-616.
doi: 10.1130/G20434.1     URL    
[51] Weijers J W H, Schouten S, Spaargaren O C, et al. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index[J]. Organic Geochemistry, 2006, 37(12): 1 680-1 693.
doi: 10.1016/j.orggeochem.2006.07.018     URL    
[52] Li Zhongqiao, Peterse F, Wu Ying, et al. Sources of organic matter in Changjiang (Yangtze River) bed sediments: Preliminary insights from organic geochemical proxies[J]. Organic Geochemistry, 2015, 85: 11-21.
doi: 10.1016/j.orggeochem.2015.04.006     URL    
[53] Park Y-H, Yamamoto M, Nam S-I, et al. Distribution, source and transportation of glycerol dialkyl glycerol tetraethers in surface sediments from the western Arctic Ocean and the northern Bering Sea[J]. Marine Chemistry, 2014, 165: 10-24.
doi: 10.1016/j.marchem.2014.07.001     URL    
[54] Peterse F, Eglinton T I.Grain size associations of branched tetraether lipids in soils and riverbank sediments: Influence of Hydrodynamic sorting processes[J]. Frontiers in Earth Science, 2017, 5: 49. DOI: 10.3389/feart.2017.00049.
doi: 10.3389/feart.2017.00049     URL    
[55] Ebersbach F, Goldenstein N, Iversen M, et al. Mechanisms for the export of archaeal lipids down the water column in the upwelling area off Cape Blanc, North-West Africa[C]∥EGU General Assembly Conference. EGU General Assembly Conference Abstracts, 2016.
[56] Ingalls A E, Huguet C, Truxal L T.Distribution of intact and core membrane lipids of archaeal glycerol dialkyl glycerol tetraethers among size-fractionated particulate organic matter in hood canal, puget sound[J]. Applied and Environmental Microbiology, 2012, 78(5): 1 480-1 490.
doi: 10.1128/AEM.07016-11     URL     pmid: 22226949
[57] Ge Tiantian, Li Dawei, Zhao Zongshan, et al. Multi-proxy records of terrestrial and marine organic matter sources in the mud area southwest off Cheju Island over the last 100 years[J]. Periodical of Ocean University of China, 2013, 43(2): 40-47.
[葛田田, 李大伟, 赵宗山, 等. 过去一百年济州岛西南泥质区有机质来源变化的多参数指标研究[J]. 中国海洋大学学报:自然科学版, 2013, 43(2):40-47.]
[58] Wang Jinpeng, Yao Peng, Meng Jia, et al. Sources, distribution and preservation of size-fractionated sedimentary organic carbon of the Changjiang Estuary and adjacent shelf based on water elutriation[J]. Acta Oceanological Sinica, 2015, 37(6): 41-57.
[王金鹏, 姚鹏, 孟佳, 等. 基于水淘选分级的长江口及其邻近海域表层沉积物中有机碳的来源、分布和保存[J]. 海洋学报, 2015, 37(6): 41-57.]
[59] Cai Jingong, Xu Jinli, Feng Xiaoping, et al. The characteristic of palynofacies of surface sediments collected from the Changjiang Estuary and its significance in carbon cycle[J]. Earth Science Frontiers, 2011, 18(6): 143-149.
[蔡进功, 徐金鲤, 冯晓萍, 等. 长江口表层沉积物孢粉相特征及其在碳循环中的意义[J]. 地学前缘, 2011, 18(6): 143-149.]
URL    
[60] Arndt S, Jørgensen B B, Larowe D E, et al. Quantifying the degradation of organic matter in marine sediments: A review and synthesis[J]. Earth-Science Reviews, 2013, 123(4): 53-86.
doi: 10.1016/j.earscirev.2013.02.008     URL    
[1] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[2] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[3] 宋敏, 杨群慧, 王华, 季福武, 王虎, 潘安阳, 周怀阳. 完整极性脂质化合物对海洋微生物活动的指示及应用局限性[J]. 地球科学进展, 2015, 30(10): 1162-1171.
[4] 朱茂旭,史晓宁,杨桂朋,李铁,吕仁燕. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355-364.
[5] 杨群慧,周怀阳,季福武,王虎,杨伟芳. 海底生物扰动作用及其对沉积过程和记录的影响[J]. 地球科学进展, 2008, 23(9): 932-941.
[6] 李涛,王鹏,汪品先. 南海西沙海槽沉积物细菌多样性初步研究[J]. 地球科学进展, 2006, 21(10): 1058-1062.
[7] 袁兴中,何文珊. 海洋沉积物中的动物多样性及其生态系统功能[J]. 地球科学进展, 1999, 14(5): 458-463.
[8] 陈建芳,郑连福. 古海洋、古气候研究的新工具——分子温度计[J]. 地球科学进展, 1996, 11(4): 404-408.
[9] 梁元博,卢博. 海洋沉积物声学物理和土力学[J]. 地球科学进展, 1991, 6(6): 42-43.
阅读次数
全文


摘要