地球科学进展 ›› 2010, Vol. 25 ›› Issue (2): 140 -146. doi: 10.11867/j.issn.1001-8166.2010.02.0140

综述与评述 上一篇    下一篇

南大洋淡水通量的气候效应研究进展
马浩,李春   
  1. 中国海洋大学物理海洋实验室海洋—大气相互作用与气候实验室,山东  青岛  266100
  • 收稿日期:2009-04-21 修回日期:2009-09-14 出版日期:2010-02-10
  • 通讯作者: 马浩 E-mail:mahao20032003@yahoo.com.cn
  • 基金资助:

    国家杰出青年科学基金项目“海洋环流在气候年代际变化中的作用”(编号:40788002);国家自然科学基金项目“风应力强迫下北太平洋副热带环流与大气环流耦合调整的过程与机理”(编号:40906003)资助

Advances in the Study of the Climatic Effect of Southern Ocean Freshwater Flux

Ma Hao, Li Chun   

  1. Physical Oceanography Laboratory & Ocean-Atmosphere Interaction and Climate Laboratory, Ocean University of China, Qingdao  266100, China
  • Received:2009-04-21 Revised:2009-09-14 Online:2010-02-10 Published:2010-02-10
  • Contact: Hao Ma E-mail:mahao20032003@yahoo.com.cn
  • Supported by:

    National Science Fund For Distinguished Young Scholars

南大洋淡水通量在古气候演变中曾经发挥过重要作用,全球变暖背景下的南极融冰事件使南大洋淡水通量成为气候学家关注的焦点。从南大洋淡水通量异常对热盐环流和海平面变化的影响以及异常信号传播路径等3个方面系统分析了各种海洋—大气耦合数值模式的已有研究结果,总结了与这一问题有关的各种不同学术观点,对目前存有争议的问题进行了讨论,并对未来有价值的研究方向和全球变暖背景下这一问题的研究前景进行了展望。

Southern Ocean Freshwater Flux (SOFF) once plays an important role in the evolvement of paleoclimate. The Antarctic ice-melting event makes SOFF become the focus of climatologists′ attention. Existing research results in various ocean-atmosphere coupled models are comprehensively analyzed based on three aspects: the impact of SOFF on global thermohaline circulation and sea-level change and the propagation path of anomalous signal induced by SOFF. A wide range of different viewpoints on the SOFF are summarized; controversial questions are discussed and valuable research directions in the future are suggested. Furthermore, a perspective on the research prospect of this topic under global warming is provided.



中图分类号: 

[1] Qin Dahe, Ren Jiawen, Xiao Cunde. Progress in the research of Antarctic ice sheet in relation to global change[J].Acta Geographica Sinica,1995, 50(2): 178-184.[秦大河, 任贾文, 效存德. 揭示气候变化的南极冰盖研究新进展[J]. 地理学报, 2002, 50(2): 178-184.]
[2] EPICA Community Member. Eight glacial cycles from an Antarctic ice core[J].Nature,2004, 429: 623-628.
[3] Shackleton N J, Hall M A, Vincent E. Phase relationships between millennial-scale events 64000~24000 years ago[J].Paleoceanography,2000, 15(6): 565-569.
[4] Fairbanks R G. A 17000-year glacio-eustatic sea level record-influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation[J].Nature,1989, 342: 637-342.
[5] Kanfoush S L, Hodell D A, Charles C D, et al. Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation[J].Science,2000, 288: 1 815-1 818.
[6] Huang Enqing, Tian Jun. Melt-Water-Pulse (MWP) events and abrupt climate change of the last deglaciation[J].Chinese Science Bulletin,2008, 53(18): 2 867-2 878.[黄恩清, 田军. 末次冰消期冰融水事件与气候突变[J]. 科学通报, 2008, 53(12): 1 437-1 447.]
[7] Blunier T, Brook E J. Timing of millennial-scale climate change in Antarctic and Greenland during the last glacial period[J].Science,2001, 291: 109-112.
[8] Martin P, Archer D, Lea D W. Role of deep sea temperature in the carbon cycle during the last glacial[J].Paleoceanography,2005, 20, PA2015, doi: 10.1029/2003PA000914.
[9] Stott L, Timmermann A, Thunell R. Southern hemisphere and deep-sea warming led deglacial atmospheric CO2  rise and tropical warming[J].Science,2007, 318: 435-438.
[10] Thomas T H, Sanderson T J O, Rose K E. Effect of climatic warming on the West Antarctic ice sheet[J].Nature,1979, 277: 355-358.
[11] Bentley C R. Rapid sea-level rise soon from West Antarctic ice sheet collapse?[J].Science,1997, 275: 1 077-1 078.
[12] Doake C S M, Corr H F J, Rott H, et al. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica[J].Nature,1998, 391: 778-780.
[13] Rack W, Rott H. Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula[J].Annals of Glaciology,2004, 39: 505-510.
[14] Rignot E, Bamber J L, Broeke M R van den, et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling[J].Nature Geoscience,2008, 1: 106-110.
[15] Weaver A J, Saenko O A, Clark P U, et al. Meltwater pulse 1A from Antarctica as a trigger of the Bølling-Aller d warm interval[J].Science,2003, 299: 1 709-1 713.
[16] Broecker W S. Does the trigger for abrupt climate change reside in ocean or in the atmosphere?[J].Science,2003, 300: 1 519-1 522.
[17] Curry R, Dickson B, Yashayaev I. A change in the freshwater balance of the Atlantic Ocean over the past four decades[J].Nature,2003, 426: 826-829.
[18] Dong B W, Sutton R. Adjustment of the coupled ocean-atmosphere system to a sudden change in the thermohaline circulation[J].Geophysical Research Letters,2002, 29, L01728, doi: 10.1029/2002GL015229.
[19] Timmermann A, An S, Krebs U, et al. ENSO suppression due to a weakening of the North Atlantic thermohaline circulation[J].Journal of Climate,2005, 18: 3 122-3 139.
[20] Zhang R, Delworth T. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation[J].Journal of Climate,2005, 18: 1 853-1 860.
[21] Wu L X, Li C, Yang C X, et al. Global teleconnections in response to a shutdown of the Atlantic Meridional Overturning Circulation[J].Journal of Climate,2008, 21: 3 002-3 019.
[22] Crowley T J. North Atlantic deep water cools the southern hemisphere[J].Paleoceanography,1992, 7: 489-497.
[23] Broecker W S. Paleocean circulation during the last deglaciation: A bipolar seesaw?[J].Paleoceanography,1998, 13: 119-121.
[24] Yin Chonghua, Yan Xiaobing, Shi Zhengguo. Progress of he study on earth system of models of intermediate complexity in recent years[J].Advances in Earth Science,2007, 22(3): 70-76.[尹崇华, 延晓兵, 石正国. 近年来中等复杂程度地球系统模式的研究进展[J]. 地球科学进展, 2007, 22(3): 70-76.]
[25] Seidov D, Stouffer R J, Haupt B J. Is there a simple bi-polar ocean seesaw?[J].Global and Planetary Change,2005, 49: 19-27.
[26] Stouffer R J, Seidov D, Haupt B J. Climate response to external sources of freshwater: North Atlantic versus the Southern Ocean[J].Journal of Climate,2007, 20: 436-448.
[27] Trevena J, Sijp W P, England M H. Stability of Antarctic Bottom Water formation to freshwater fluxes and implications for global climate[J].Journal of Climate,2008, 21: 3 310-3 326.
[28] Aiken C M, England M H. Sensitivity of the present-day climate to freshwater forcing associated with Antarctic sea ice loss[J].Journal of Climate,2008, 21: 3 936-3 946.
[29] Swingedouw D, Fichefet T, Goosse H, et al. Impact of transient freshwater releases in the Southern Ocean on the AMOC and climate[J].Climate Dynamics,2009,33(2/3):365-381.
[30] Ivchenko V O, Zalesny V B, Drinkwater M R. Can the equatorial ocean quickly respond to Antarctic sea ice/salinity anomalies?[J].Geophysical Research Letters,2004, 31, L15310, doi: 10.1029/2004GL020472.
[31] Ivchenko V O, Zalesny V B, Drinkwater M R, et al. A quick response of the equatorial ocean to Antarctic sea ice/salinity anomalies[J].Journal of Geophysical Research,2006, 111, C10018, doi: 10.1029/2005JC003061.
[32] Richardson G, Wadley M R, Heywood K J. Short-time climate response to a freshwater pulse in the Southern Ocean[J].Geophysical Research Letters,2005, 32, L03702, doi: 10.1029/2004GL021586.
[33] Blaker A T, Sinha B, Ivchenko V O, et al. Identifying the roles of the ocean and the atmosphere in creating a rapid equatorial response to a Southern Ocean anomaly[J].Geophysical Research Letters,2006, 33, L06720, doi: 10.1029/2005GL025474.
[34] White W B, Peterson R G. An Antarctic Circumpolar Wave in surface pressure, wind, temperature and sea-ice extent[J].Nature,1996, 380: 699-702.
[35] Peterson R G, White W B. Slow oceanic teleconnections linking the Antarctic Circumpolar Wave with the tropical El Niño-Southern Oscillation[J].Journal of Geophysical Research,1998, 103(C11): 24 573-24 583.
[36] Cai W, Baines P G. Forcing the Antarctic Circumpolar Wave by El Niño-Southern Oscillation teleconnections[J].Journal of Geophysical Research,2001, 106(C5): 9 019-9 038.
[37] Zhou Qin,Zhao Jinping, He Yijun. Review of studies of the Antarctic circumpolar wave[J].Advances in Earth Science,2004, 19(5): 761-766.[周琴, 赵进平, 何宜军. 南极绕极波研究综述[J]. 地球科学进展, 2004, 19(5): 761-766.]
[38] Tomas R A, Webster P J. Horizontal and vertical structure of cross-equatorial wave propagation[J].Journal of the Atmospheric Sciences,1994, 51: 1 417-1 430.
[39] Intergovernmental Panel On Climate Change. Climate Change 2007: The Physical Science Basis-Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007: 829-831.
[40] Clark P U, Mitrovica J X, Milne G A, et al. Sea-level fingerprinting as a direct test for the source of global meltwater pulse 1A[J].Science,2002, 295: 2 438-2 442.
[41] Mitrovica J X, Gomez N, Clark P U. The sea-level fingerprint of West Antarctic collapse[J].Science,2009, 323: 753-753.
[42] Oppenheimer M. Global warming and the stability of the West Antarctic ice sheet[J].Nature,1998, 393: 325-332.
[43] Rott H, Rack W, Skvarca P, et al. Northern Larsen ice shelf, Antarctic: Further retreat after collapse[J].Annals of Glaciology,2002, 34: 277-282.
[44] De Angelish, Skvarca P. Glacier surge after ice shelf collapse[J].Science, 2003, 299: 1 560-1 562.
[45] Kidson J W. Indices of the Southern Hemisphere zonal wind[J].Journal of Climate,1988, 1: 183-194.
[46] Hartmann D L, Fiona L. Wave-driven zonal flow vacillation in the Southern Hemisphere[J].Journal of the Atmospheric Sciences,1998, 55: 1 303-1 315.
[47] Thompson D W J, Wallace J M. Annular modes in the extratropical circulation. Part I: Month-to-month variability[J].Journal of Climate,2000, 13: 1 000-1 016.
[48] Xiao Cunde. Changes in Antarctic climate system: Past, present and future[J].Advances in Climate Change Research,2008, 4(1): 1-7.[效存德. 南极地区气候系统变化: 过去, 现在和将来[J]. 气候变化研究进展, 2008, 4(1): 1-7.]
[49] Marshall G J. Trends in the Southern Annular Mode from observations and reanalysis[J].Journal of Climate,2003, 16: 4 134-4 143.
[50] Mayewski P A, Meredith M P, Summerhayes C P, et al. State of the Antarctic and Southern Ocean climate system[J].Reviews of Geophysics,2009, 47, RG1003, doi: 10.1029/2007RG000231.

[1] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[2] 李得勤, 张述文, 文小航, 贺慧. 土壤湿度参数化及对天气和气候模拟影响的研究进展[J]. 地球科学进展, 2016, 31(3): 236-247.
[3] 华文剑, 陈海山, 李兴. 中国土地利用/覆盖变化及其气候效应的研究综述[J]. 地球科学进展, 2014, 29(9): 1025-1036.
[4] 丁晓东, 郑立伟, 高树基. 新仙女木事件研究进展 *[J]. 地球科学进展, 2014, 29(10): 1095-1109.
[5] 周天军,张学洪,刘海龙. 大洋环流模式的温盐表面边界条件处理及其影响研究评述[J]. 地球科学进展, 2009, 24(2): 111-122.
[6] 许强,陈伟,张倬元. 对我国西南地区河谷深厚覆盖层成因机理的新认识[J]. 地球科学进展, 2008, 23(5): 448-456.
[7] 张小曳. 中国大气气溶胶及其气候效应的研究[J]. 地球科学进展, 2007, 22(1): 12-16.
[8] 刘宇,管玉平,林一骅. 大洋热盐环流研究的一个焦点:北太平洋是否有深水形成[J]. 地球科学进展, 2006, 21(11): 1185-1192.
[9] 陈星;赵鸣;张洁. 南水北调对北方干旱化趋势可能影响的初步分析[J]. 地球科学进展, 2005, 20(8): 849-855.
[10] 夏祥鳌;王明星. 气溶胶吸收及气候效应研究的新进展[J]. 地球科学进展, 2004, 19(4): 630-635.
阅读次数
全文


摘要