地球科学进展 doi: 10.11867/j.issn.1001-8166.2026.009

   

高寒荒漠区集中式光伏电站微气象与植被效应对比研究
马鸿元1,2,叶得力1,2,张嘉宸1,2,唐菲菲3,4,崔颖颖3*   
  1. (1. 青海黄河上游水电开发有限责任公司光伏产业技术分公司,青海 西宁 810008;2. 青海黄河上游水电开发有限责任公司 高原能源产业与生态研究中心,青海 西宁 810008;3. 青海理工学院青海省高原气候变化及其生态环境效应重点实验室,青海 西宁 810016;4. 青海师范大学 地理科学学院,青海 西宁 810016)
  • 基金资助:
    国家重点研发计划项目(编号:2024YFF0729101); 国家电投集团黄河上游水电开发有限责任公司科技项目(编号:KY-C-2024-GF04, KY-C-2025-HB05)资助.

A Comparative Study on Micro-meteorology and Vegetation Effects of Centralized Photovoltaic Power Stations in High-Altitude Desert Regions

Ma Hongyuan1,2, Ye Deli1, 2, Zhang Jiachen1, 2, Tang Feifei3, 4, Cui Yingying3*   

  1. (1. Photovoltaic Industry Technology Branch, Qinghai Huanghe Hydropower Development Co., LTD, Xining 810008, China; 2. Research Center for Plateau Energy Industry and Ecology, Qinghai Huanghe Hydropower Development Co., LTD, Xining 810008, China; 3. Qinghai Provincial Key Laboratory of Plateau Climate Change and Corresponding Ecological and Environmental Effects, Qinghai Institute of Technology, Xining 810016, China; 4. College of Geographical Sciences, Qinghai Normal University, Xining 810016, China)
  • About author:Ma Hongyuan, research areas include the ecological effects of clean energy development. E-mail: ma_hongyuan@foxmail.com
  • Supported by:
    Project supported by the National Key Research and Development Program of China (Grant No. 2024YFF0729101);SPIC Huanghe Hydropower Development Co., LTD Scientific Research Project (Grant No. KY-C-2024-GF04, KY-C-2025-HB05).
为探究不同气候背景下集中式光伏电站的微气象和生态环境效应差异,选取青海省极干旱、干旱和半干旱3 种典型气候背景下的高寒荒漠光伏电站,采用对照观测与遥感长时序归一化植被指数反演,分析光伏阵列内外的微气象要素及植被演变特征。结果表明,光伏电站的微气象与生态环境效应沿干旱梯度表现出不同响应,水分可利用性是核心调控因子。在极干旱区呈显著“热岛效应”且无植被恢复;干旱区表现为夜间保温与微弱增湿,植被呈恢复趋势;半干旱区则表现为生态系统正反馈,光伏遮荫与阻风效应促进保墒,植被快速恢复并通过蒸腾冷却抵消物理升温效应。研究阐明了光伏电站生态效应由物理扰动向生态调节转化的演变规律,证实了适宜水分条件下光伏开发与生态修复协同的可行性。未来,开展长时间更大范围的生态气象观测,并发展适用于光伏园区的生态机理模型有助于我们深入理解光伏的生态效应,为产业布局相关决策提供依据与支撑。
Abstract: To investigate the differences in microclimatic and ecological environmental effects of centralized photovoltaic (PV) power stations under diverse climatic backgrounds, high-altitude desert PV stations located in Qinghai Province were selected as the focal point of this research. These sites were chosen to represent three typical climatic backgrounds: hyper-arid, arid, and semi-arid zones. Micro-meteorology factors and vegetation evolution characteristics inside and outside the PV arrays were analyzed by employing paired insideoutside observations and long-time-series NDVI retrieval. It was indicated by the results that distinct, non-linear responses are exhibited by the microclimatic and ecological effects of PV stations along the aridity gradient. Water availability was identified as the core regulatory factor modulating these interactions. Specifically, a significant "heat island effect" with no observable vegetation recovery was observed in the hyper-arid zone, primarily attributed to severe moisture deficits. A transitional state was demonstrated in the arid zone, characterized by nighttime warming and slight humidification effects, accompanied by a discernible trend toward vegetation recovery. In stark contrast, positive ecosystem feedback mechanisms were displayed in the semi-arid zone; here, soil moisture conservation was significantly facilitated by the shading and wind-blocking effects of PV modules. Improved moisture status was found to enable rapid vegetation restoration, by which the physical warming effects of the panels were subsequently offset through the mechanism of transpirational cooling. The evolutionary mechanism by which the ecological impacts of PV stations transition from purely physical disturbances to active ecological regulation is elucidated in this study. The feasibility of achieving synergy between large-scale photovoltaic development and ecological restoration, provided that moisture conditions are suitable, is empirically confirmed. In the future, the implementation of stable, long-term, and large-scale ecometeorological observations, coupled with the development of ecological mechanism models specifically tailored for PV parks, is considered essential. A deeper, mechanistic understanding of the ecological footprints of photovoltaics will be facilitated by these efforts, thereby providing robust scientific evidence and support for optimizing decision-making in sustainable energy planning.

中图分类号: 

[1] 姜琳子, 贾炳浩, 潘成臣. 气温与降水协同作用对奈曼旗土壤微生物生物量碳的影响[J]. 地球科学进展, 2025, 40(12): 1380-1393.
[2] 姚蓬娟, 王春乙, 张继权. 长江中下游地区双季早稻冷害、热害危险性评价[J]. 地球科学进展, 2016, 31(5): 503-514.
[3] 何祺胜,陈尔学,曹春香,刘清旺,庞勇. 基于LIDAR数据的森林参数反演方法研究[J]. 地球科学进展, 2009, 24(7): 748-755.
[4] 张阳,柳钦火,黄华国,刘强. 大尺度辐射度模型敏感性分析及在祁连山林区的应用[J]. 地球科学进展, 2009, 24(7): 834-842.
[5] 谭俊磊,马明国,车涛,白云洁. 基于不同郁闭度的青海云杉冠层截留特征研究[J]. 地球科学进展, 2009, 24(7): 825-833.
[6] 曾燕,邱新法,潘敖大,刘昌明. 地形对黄河流域太阳辐射影响的分析研究[J]. 地球科学进展, 2008, 23(11): 1185-1193.
[7] 赵 鸿,王润元,王鹤龄,杨启国,邓振镛,肖国举. 西北干旱半干旱区春小麦生长对气候变暖响应的区域差异[J]. 地球科学进展, 2007, 22(6): 636-641.
[8] 王润元,杨兴国,张九林,王德民,梁东升,张立功. 陇东黄土高原土壤储水量与蒸发和气候研究[J]. 地球科学进展, 2007, 22(6): 625-635.
[9] 刘春蓁. 气候变化对陆地水循环影响研究的问题[J]. 地球科学进展, 2004, 19(1): 115-119.
[10] 马柱国,魏和林,符淙斌. 土壤湿度与气候变化关系的研究进展与展望[J]. 地球科学进展, 1999, 14(3): 299-305.
阅读次数
全文


摘要