地球科学进展 doi: 10.11867/j.issn.1001-8166.2024.051.

   

海底高原与俯冲带相互作用的地质效应的 研究进展
闫施帅1,2,鄢全树1,2,3,石学法1,2,3,袁龙1   
  1. (1. 自然资源部第一海洋研究所 海洋地质与成矿作用重点实验室,山东 青岛 266061;2. 河海大学 海洋学院,江苏 南京 210098;3.山东省深海矿产资源开发重点实验室(筹),山东 青岛 266061)
  • 出版日期:2024-07-16
  • 通讯作者: 鄢全树,男,江西广丰人,研究员,主要从事海底岩浆作用与地质演化方面的研究. E-mail: yanquanshu@163.com
  • 基金资助:
    崂山实验室科技创新项目(编号:LSKJ202204103); 山东省泰山学者建设工程项目(编号:tstp20230643)资助.

Research Advances on the Geological Effects of the Interaction of Oceanic Plateau with Subduction Zone

YAN Shishuai1, 2, YAN Quanshu1, 2, 3*, SHI Xuefa1, 2, 3, YUAN Long1   

  1. (1. Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; 2. College of Oceanography, Hohai University, Nanjing 210098, China; 3. Key Laboratory of Deep Sea Mineral Resources Development, Shandong (preparatory), Qingdao 266061, China)
  • Online:2024-07-16 Published:2024-07-16
  • Contact: YAN Quanshu, Professor, research areas include submarine magmatism and geological evolution. E-mail: yanquanshu@163.com
  • About author:YAN Shishuai, Ph. D student, research areas include Geochemistry of submarine rocks. E-mail: shishuaiyan@yeah.net
  • Supported by:
    Project supported by the Laoshan Laboratory Science and Technology Innovation Program (Grant No. LSKJ202204103); The Taishan Scholarship from Shandong Province (Grant No. tstp20230643).
全球俯冲汇聚系统中,俯冲输入组分包括正常大洋板片以及具浮力的海底高原等正地形, 两者对俯冲带将产生迥异的地质效应,因此,深入开展海底高原与俯冲带相互作用研究对理解俯 冲带地球动力学过程和陆壳侧向增生等地质过程具有重要意义。系统总结了目前正处于一些关 键俯冲带处的典型海底高原的地质与地球物理特征,结合俯冲带特征及数值模拟成果,深入探讨 海底高原与俯冲带相互作用的地质效应。在俯冲带运动学和几何学方面,位于俯冲前缘的具浮力 的海底高原等正地形通常会抵制俯冲,并可能造成俯冲带后撤和俯冲极性反转并形成新的俯冲 带,甚至可能会终止俯冲并增生于成熟岛弧/陆壳边缘。然而,近来的研究显示,部分海底高原的俯 冲行为并没有终止,而是俯冲角度变缓呈现平板俯冲的样式,从而造成俯冲带地区上覆板块的构 造缩短与增厚以及岩浆活动逐渐向板内迁移。在岩石地球化学方面,具富集地球化学特征的海底 高原的俯冲消减不仅影响着壳幔圈层相互作用过程、岛弧—弧后熔岩的地球化学组分以及俯冲带 地区热液矿床的形成,而且这些地质体的深俯冲也将对地幔不均一性的形成作出重要贡献。最 后,指出未来会在海底高原深部精细结构及演化,岛弧及弧后盆地对“海底高原—海沟”新俯冲构 造格局的地质响应,以及控制海底高原发生俯冲/增生的因素及其之间的定量关系等方面较大的发 展潜力。
In the global subduction systems, the subduction input includes normal oceanic slabs and some buoyant oceanic plateaus. Both of them will exert different geological effects on the subduction zone. Thus, performing the study on the interaction of oceanic plateau and subduction zone will be significant for understand the subduction zone geodynamics and the lateral accretion processes of continental crust. This study summarized the geological and geophysical characteristics of some typical oceanic plateaus that are currently closing to a subduction zone. These, combined with geological and geophysical features of adjacent subduction zones and some recent numerical simulation data, have been used to discuss the geological effects of the interaction between oceanic plateau and subduction zone. In the aspects of kinematics and geometry, buoyant oceanic plateaus can generally resist subduction, lead to subduction retreatment and reversal of subduction polarity, and thereby form a new subduction zone. The subduction process in some subduction zones will be terminated due to the arrival of oceanic plateaus, and the plateaus finally accrete to the mature arc/crustal margins and become part of continental crust. However, recent studies have shown that part of oceanic plateaus does not lead to the termination of the subduction process, but rather contribute to the occurrence of flat subduction, thereby result in tectonic shortening and thickening of the overlying plate in the subduction zone area, and the gradual migration of magmatic activity toward intraplate setting. Geochemically, these oceanic plateaus with enriched compositions will not only affect subduction zone lava geochemistry and the formation of hydrothermal deposits, but possibly contribute to the formation of mantle heterogeneity. Finally, this study put forward some key scientific issues on the interaction of oceanic plateaus with subduction zones, including the detailed crust/mantle structure of subduction zone, the geological and geochemical response of the island arc and backarc basin to the new subduction tectonic framework of “Oceanic plateau-Trench”, and quantitative correlations between the factors controlling whether plateaus are accreted or subducted remain unclear.

中图分类号: 

[1] 汪品先, 郭正堂, 焦念志, 金之钧, 王成善. 寻找地球系统科学的突破口[J]. 地球科学进展, 2024, 39(8): 767-771.
[2] 闫施帅, 鄢全树, 石学法, 袁龙. 海底高原与俯冲带相互作用的地质效应的研究进展[J]. 地球科学进展, 2024, 39(7): 702-716.
[3] 魏新元, 栾锡武, 孟凡顺, 冉伟民, 鲁银涛, 刘泽璇, 王嘉, 胡庆, 张丹丹. 帝汶海槽构造与地震特征对深部板块的约束[J]. 地球科学进展, 2022, 37(3): 277-289.
[4] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[5] 林间, 徐敏, 周志远, 王月. 全球俯冲带大洋钻探进展与启示[J]. 地球科学进展, 2017, 32(12): 1253-1266.
[6] 杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 焦守涛, 王淑华. 弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比[J]. 地球科学进展, 2016, 31(1): 66-77.
[7] 夏阳,张立飞. 中源地震脱水脆变机制的岩石学研究进展[J]. 地球科学进展, 2013, 28(9): 997-1006.
[8] 朱俊江. 哥斯达黎加地震起源计划——IODP 334航次介绍[J]. 地球科学进展, 2011, 26(12): 1300-1305.
[9] 王永锋;金振民;. 地震波各向异性:窥测地球深部构造的“探针”[J]. 地球科学进展, 2005, 20(9): 946-953.
[10] 王利;周祖翼. 发震带试验(SEIZE)[J]. 地球科学进展, 2005, 20(8): 823-832.
[11] 赖绍聪. 岩浆作用的物理过程研究进展[J]. 地球科学进展, 1999, 14(2): 153-158.
[12] 金性春. 大洋钻探与西太平洋构造[J]. 地球科学进展, 1995, 10(3): 234-239.
[13] 徐夕生; 周新民; 王德滋. 中酸性岩浆岩中岩石包体研究的新进展[J]. 地球科学进展, 1993, 8(4): 54-58.
[14] 张魁武,张旗,李达周. 阿拉斯加里镁铁—超镁铁杂岩的研究历史和现状[J]. 地球科学进展, 1990, 5(6): 48-51.
阅读次数
全文


摘要