地球科学进展 ›› 2023, Vol. 38 ›› Issue (2): 125 -136. doi: 10.11867/j.issn.1001-8166.2022.103

综述与评述 上一篇    下一篇

大洋铁锰结壳年代框架模型的天文调谐校正:方法与应用
郭栋山 1 , 2( ), 韩喜球 1 , 2 , 3( ), 范维佳 2, 邱中炎 2, 李谋 2, 容雅鑫 1 , 2   
  1. 1.浙江大学海洋学院,浙江 舟山 316021
    2.自然资源部海底科学重点实验室,自然资源部 第二海洋研究所,浙江 杭州 310012
    3.上海交通大学海洋学院,上海 200240
  • 收稿日期:2022-10-18 修回日期:2022-12-07 出版日期:2023-02-10
  • 通讯作者: 韩喜球 E-mail:22034200@zju.edu.cn;xqhan@sio.org.cn
  • 基金资助:
    国家自然科学基金项目“海山结壳高分辨率地球化学记录:上新世以来中北太平洋经向环流演化”(41606061);浙江省“万人计划”杰出人才项目(2018R51003)

Astronomical Tuning and Calibration for Age Model of Pelagic Fe-Mn Crust: Methods and Application

Dongshan GUO 1 , 2( ), Xiqiu HAN 1 , 2 , 3( ), Weijia FAN 2, Zhongyan QIU 2, Mou LI 2, Yaxin RONG 1 , 2   

  1. 1.Ocean College, Zhejiang University, Zhoushan Zhejiang 316021, China
    2.Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
    3.School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2022-10-18 Revised:2022-12-07 Online:2023-02-10 Published:2023-03-02
  • Contact: Xiqiu HAN E-mail:22034200@zju.edu.cn;xqhan@sio.org.cn
  • About author:GUO Dongshan (1998-), female, Lüliang City, Shanxi Province, Master student. Research areas include polymetalic crusts and paleoceanography. E-mail: 22034200@zju.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “High-resolution geochemical records of seamount crusts: evolution of meridional circulation in the Central North Pacific since Pliocene”(41606061);The “Ten-thousand Talents Plan” of Zhejiang Province(2018R51003)

海山铁锰结壳是记录古海洋环境演化的重要载体,建立可靠且高分辨率的年代框架是解译其中信息的关键。结壳定年有多种方法,但是在定年范围、定年精度及准确性等方面仍各具局限性。地球轨道印记法及天文调谐校正技术是建立结壳高分辨率年龄框架的有效途径,为利用结壳研究万年尺度的古气候与古海洋环境演化提供了可能。首先对结壳的现有定年方法进行了简要回顾和总结,重点综述了地球轨道印记法及天文调谐校正技术,并分析了各种天文检验与调谐方法在结壳中的适用性与可靠性。认为探究结壳记录中天文信号的影响因素、选择合适的环境替代指标并高分辨率提取其空间序列等,是应用地球轨道周期印记法为海山结壳建立可靠年代框架亟待努力的方向。

Ferromanganese crusts on seamounts are critical archives of the evolutionary history of paleo-oceanic environmental history, and a high-resolution age framework is essential for interpreting the information therein. Several approaches are available for determining the age of crusts, however, each still has limitations in terms of the time scale, resolution, or precision. The Earth orbital pacing method in combination with astronomical tuning can provide an effective way to establish a high-resolution age framework for crusts, which offers the possibility of using crusts to study the 10 000-year-scale evolution of paleo-climatic and paleo-oceanic environments. This study first briefly reviews the existing dating methods for crusts, then introduces in detail the Earth orbital pacing method combined with astronomical tuning and examines the applicability and reliability of various astronomical tests and tuning methods in crusts. The investigation of the specific influence mechanism of astronomical signals, the selection of suitable environmental proxies, and the high-resolution extraction of their spatial series are considered to be the most important directions for the establishment of a reliable age framework for crusts using the Earth orbital pacing method.

中图分类号: 

表1 结壳年代框架建立方法
Table 1 Dating methods of ferromanganese crusts
图1 地球轨道周期变化对地球表层系统的影响(据参考文献[ 28 - 29 ]修改)
Fig. 1 Orbitally induced Earth surface system cyclemodified afrer references28-29])
图2 结壳天文时间序列分析流程图
Fig. 2 Flow chart of astronomical time series analysis of crusts
图3 结壳形成机制(据参考文献[ 33 - 34 ]修改)
Fig. 3 Mechanism of the formation of crustsmodified after references33-34])
图4 ASM天文检验结果
(a) 平均频谱误差(ASM);(b) 零假设检验水平(阴影部分为小于临界水平部分);(c) 天文参数(灰色虚线);(d) 目标频率(红色实线)与序列显著频率(灰色虚线)
Fig. 4 Plots for results of ASM analysis performed in Astrochron
(a) Average Spectral Misfit (ASM); (b) H 0 significance level (the shaded area indicates that H 0-SL is less than the critical level); (c) The number of contributing astronomical parameters; (d) The target frequencies (red lines) and the significant frequencies (dashed gray lines) of the data series
图5 COCO天文检验结果
(a) 相关系数(COCO);(b) 零假设检验水平( H 0-SL);(c) 天文参数
Fig. 5 Plots for results of COCO analysis performed in Acycle
(a) Correlation Coefficient (COCO); (b) H 0 Significance Level ( H 0-SL); (c) The number of contributing astronomicalparameters
图6 TimeOpt天文检验结果(据参考文献[ 2 ]修改)
(a) 207Pb/ 206Pb深度域序列;(b) 在生长速率2.7 mm/Ma下校正序列的频谱结果(黑线为线性频谱,灰线为对数频谱),黄色阴影区代表计算岁差振幅包络线的频率带宽(0.035~0.065 cycles/ka),红色虚线为偏心率和岁差目标频率;(c) 时间域序列的岁差滤波曲线(黑线)及其振幅包络线(红线);(d)序列岁差振幅包络(红线)线与偏心率模型(黑线);(e) 不同生长速率对应的振幅包络拟合(红点)以及频谱拟合(灰线)的皮尔逊相关系数 r e n v o l o p e 2 r s p e c t r a l 2 ;(f) 不同生长速率对应的包络线与频谱综合拟合度 r o p t 2 ;(g) 2 000次蒙特卡洛模拟结果( ρ AR1=0.826),用以评估 r o p t 2 =0.038的置信水平( P值为0.005);(h) 为序列岁差振幅包络线与偏心率模型交叉图(红色虚线横纵坐标之比1∶1)
Fig. 6 Plots for results of TimeOpt analysis performed in Astrochronmodified after reference 2 ])
(a) The depth-domain 207Pb/ 206Pb data. (b) Periodogram for the 207Pb/ 206Pb data, given the TimeOpt derived average growth rate of 2.7 mm/Ma (black line = linear spectrum; gray line = log spectrum). The yellow shaded region illustrates the bandpass filter for evaluation of the precession amplitude envelope (0.035 ~ 0.065 cycles/ka). The dashed red lines indicate the eccentricity and precession target periods. (c) Comparison of the band-passed precession signal (black line), and the data amplitude envelope (red line). (d) Comparison of the data amplitude envelope (red line) and the TimeOpt-reconstructed eccentricity model (black line). (e) Squared Pearson correlation coefficient for the amplitude envelope fit ( r e n v o l o p e 2 ; red dots) and the spectral power fit ( r s p e c t r a l 2 , gray line) at each evaluated growth rate. (f) Combined envelope and spectral power fit ( r o p t 2 ) at each evaluated growth rate. (g) Summary of 2 000 Monte Carlo simulations with AR1 surrogates ( ρ AR1 = 0.826), used to evaluate the significance of the maximum observed r o p t 2 of 0.038 ( P = 0.005). (h) Cross plot of the data amplitude envelope and the TimeOpt-reconstructed eccentricity model (dashed red line is the 1∶1 line)
图7 结壳085_004 2 校正后 207Pb/206Pb时间序列 ρ1 沉积噪声模型以及不同红噪强度( ρAR10.3~0.9)标准天文模型的天文检验统计功效(据参考文献[ 41 ]修改)
序列 ρ 1沉积噪声模型基于Acycle软件获得 46 ,置信水平通过2 000次蒙特卡洛模拟评估得到,滑动窗口设置为750~1 000 ka;红噪强度 ρ AR1由0.3变化到0.9时,运用调幅(包络线)拟合方法(灰色区域及黑色箭头)、频率拟合方法(蓝色区域与箭头)以及调幅—周期综合拟合方法(红色区域与箭头)计算得到的统计功效的变化范围与趋势于图中所示
Fig. 7 Plots for ρ1 model of tuned 207Pb/206Pb time-series of crust 085_004 2 and the ρAR1-dependent0.3~0.9of statistical power trends for the detection of astronomical cycles in the standardized Eccentricity + PrecessionEPmodelmodified after reference 41 ])
The ρ 1 model of tuned series is derived from the Acycle software 46 . The confidence levels are estimated by a Monte Carlo analysis with 2 000 iterations and a running window of 750~1 000 ka. The variable ranges and the trends of the statistical power ( ρ AR1 change from 0.3 to 0.9) evaluated by amplitude envelope fit (gray area and black arrow), spectral power fit (blue area and arrow) and combined fit (red area and arrow) are reported
图8 eCOCO天文检验结果
(a) 相关系数演化图(eCOCO);(b) 零假设检验水平演化图(e H 0-SL);(c) 天文周期数演化图:白线代表参考文献[ 2 ]的调谐校正结果
Fig. 8 Plots for results of eCOCO analysis performed in Acycle
(a) Evolutionary correlation coefficient (eCOCO); (b) Evolutionary H 0 significance level; (c) An evolutionary map of the number of contributing astronomical parameters shown with published growth rate curve by reference [ 2 ](white lines)
1 KOSCHINSKY A, HEIN J R. Marine ferromanganese encrustations: archives of changing oceans[J]. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 2017, 13(3): 177-182.
2 JOSSO P, van PEER T, HORSTWOOD M S A, et al. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts[J]. Earth and Planetary Science Letters, 2021, 553. DOI:10.1016/j.epsl.2020.116651 .
3 SOMAYAJULU B L K. Growth rates of oceanic manganese nodules: implication to their genesis[J]. Paleo-Earth Environment and Resource Potential, 2000, 78(3): 300-308.
4 CLAUDE C, SUHR G, HOFMANN A W, et al. U-Th chronology and paleoceanographic record in a Fe-Mn crust from the NE Atlantic over the last 700 ka[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4 845-4 854.
5 LYLE M. Estimating growth rates of ferromanganese nodules from chemical compositions: implications for nodule formation processes[J]. Geochimica et Cosmochimica Acta, 1982, 46(11): 2 301-2 306.
6 HUN C H, KU T L. Radiochemical observations on manganese nodules from three sedimentary environments in the north Pacific[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 951-963.
7 PUTEANUS D. Correlation of Co concentration and growth rate—a method for age determination of ferromanganese crusts[J]. Chemical Geology, 1988, 69(1/2): 73-85.
8 MANHEIM F T, LANE-BOSTWICK C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific Sea floor[J]. Nature, 1988, 335(6 185): 59-62.
9 MCMURTRY G M. Cenozoic accumulation history of a Pacific ferromanganese crust[J]. Earth and Planetary Science Letters, 1994, 125(1/2/3/4): 105-118.
10 HARADA K, NISHIDA S. Biostratigraphy of some marine manganese nodules[J]. Nature, 1976, 260(5 554): 770-771.
11 KADKO D, BURCKLE L H. Manganese nodule growth rates determined by fossil diatom dating[J]. Nature, 1980, 287(5 784): 725-726.
12 JOSHIMA M. Magnetostratigraphy of hydrogenetic manganese crusts from northwestern Pacific seamounts[J]. Marine Geology, 1998, 146(1/2/3/4): 53-62.
13 ODA H, USUI A, MIYAGI I, et al. Ultrafine-scale magnetostratigraphy of marine ferromanganese crust[J]. Geology, 2011, 39(3): 227-230.
14 LUO Shunkai, ZHOU Huaiyang, ZHAO Guoqing, et al. Age of a Fe-Mn crust on the Gagua Ridge and applicability studies of dating methods[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 135-145.
罗顺开, 周怀阳, 赵国庆, 等. 加瓜海脊铁锰结壳的年龄及其定年方法适用性比较[J]. 海洋地质与第四纪地质, 2022, 42(1): 135-145.
15 JOSSO P, PARKINSON I, HORSTWOOD M, et al. Improving confidence in ferromanganese crust age models: a composite geochemical approach[J]. Chemical Geology, 2019, 513: 108-119.
16 KLEMM V. Osmium isotope stratigraphy of a marine ferromanganese crust[J]. Earth and Planetary Science Letters, 2005, 238(1/2): 42-48.
17 TOKUMARU A, NOZAKI T, SUZUKI K, et al. Re-Os isotope geochemistry in the surface layers of ferromanganese crusts from the Takuyo Daigo Seamount, northwestern Pacific Ocean[J]. Geochemical Journal, 2015, 49(3): 233-241.
18 WANG Yang, FANG Nianqiao. Precise characteristics of Os isotopic composition of seawater since 80 Ma: recorded in polymetallic crusts from CW Pacific[J]. Marine Sciences, 2020, 44(9): 21-28.
王洋, 方念乔. 80Ma以来海水Os同位素组成曲线的精细特征: 中、西太平洋多金属结壳的记录[J]. 海洋科学, 2020, 44(9): 21-28.
19 VONDERHAAR D L, MAHONEY J J, McMURTRY G M. An evaluation of strontium isotopic dating of ferromanganese oxides in a marine hydrogenous ferromanganese crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(20): 4 267-4 277.
20 HAN X Q. Rhythmic growth of Pacific ferromanganese nodules and their Milankovitch climatic origin[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 143-157.
21 HAN Xiqiu, QIU Zhongyan, MA Weilin, et al. High-resolution dating of Co-rich crusts: a comparative study using the methods of orbital pacing and 230Thex/232Th dating [J]. Science in China Series D: Earth Sciences, 2009, 39(4): 497-503.
韩喜球, 邱中炎, 马维林, 等. 富钴结壳高分辨率定年: 地球轨道周期印记法与230Thex/232Th测年法对比研究[J]. 中国科学D辑: 地球科学, 2009, 39(4): 497-503.
22 MARKLEY M J, TEYSSIER C, COSCA M. The relation between grain size and 40Ar/39Ar date for Alpine white Mica from the Siviez-Mischabel Nappe, Switzerland[J]. Journal of Structural Geology, 2002, 24(12): 1 937-1 955.
23 BADA J L. The dating of fossil bones using the racemization of isoleucine[J]. Earth and Planetary Science Letters, 1972, 15(3): 223-231.
24 BURNETT W C. Growth rates of Pacific manganese nodules as deduced by uranium-series and hydration-rind dating techniques[J]. Earth and Planetary Science Letters, 1976, 33(2): 208-218.
25 PRASAD M S. Australasian microtektites in a substrate: a new constraint on ferromanganese crust accumulation rates[J]. Marine Geology, 1994, 116(3/4): 259-266.
26 MIZELL K, HEIN J R, LAM P J, et al. Geographic and oceanographic influences on ferromanganese crust composition along a Pacific Ocean meridional transect, 14N to 14S[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(2). DOI:10.1029/2019GC008716 .
27 KYTE F T, LEINEN M, HEATH G R, et al. Cenozoic sedimentation history of the central North Pacific: inferences from the elemental geochemistry of core LL44-GPC3[J]. Geochimica et Cosmochimica Acta, 1993, 57(8): 1 719-1 740.
28 STRASSER A H, HECKEL P H. Cyclostratigraphy concepts, definitions, and applications[J]. Newsletters on Stratigraphy, 2007, 42(2): 75-114.
29 PISIAS N G, IMBRIE J. Orbital geometry, CO2, and Pleistocene climate[J]. Oceanus, 1986, 29(4): 43-49.
30 WU Huaichun, ZHANG Shihong, FENG Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science, 2011, 36(3): 409-428.
吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学, 2011, 36(3): 409-428.
31 HINNOV L A. Cyclostratigraphy and its revolutionizing applications in the Earth and planetary sciences[J]. Geological Society of America Bulletin, 2013, 125(11/12): 1 703-1 734.
32 HAN Xiqiu, QIU Zhongyan. The identification of milankovitch cycles in the gray-level series of Fe-Mn crust from the central Pacific Ocean and its growth rate evolution[J]. Acta Sedimentologica Sinica, 2010, 28(5): 1 006-1 011.
韩喜球, 邱中炎. 中太平洋铁锰结壳灰度序列中米兰柯维奇周期的识别及结壳生长速率的演化[J]. 沉积学报, 2010, 28(5): 1 006-1 011.
33 KOSCHINSKY A, HALBACH P. Sequential leaching of marine ferromanganese precipitates: genetic implications[J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5 113-5 132.
34 HALBACH P. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from Central Pacific seamount areas[J]. Earth and Planetary Science Letters, 1984, 68(1): 73-87.
35 LUSTY P A J, HEIN J R, JOSSO P. Formation and occurrence of ferromanganese crusts: Earth’s storehouse for critical metals[J]. Elements, 2018, 14(5): 313-318.
36 HAN Xiqiu, QIU Zhongyan, MA Weilin. Seamount cobalt-rich crusts: high resolution age framework and Paleo-environment records[M]. Beijing: Geological Publishing House, 2014.
韩喜球,邱中炎,马维林. 海山富钴结壳:高分辨率年代框架与古环境记录研究[M]. 北京: 地质出版社, 2014.
37 HINNOV L A. New perspectives on orbitally forced stratigraphy[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 419-475.
38 WEEDON G P. Time series analysis and cyclostratigraphy: examining stratigraphic records of environmental cycles[M]. Cambridge: Cambridge University Press, 2003.
39 ZEEDEN C, MEYERS S R, LOURENS L J, et al. Testing astronomically tuned age models[J]. Paleoceanography, 2015, 30(4): 369-383.
40 MEYERS S, SAGEMAN B. Quantification of deep-time orbital forcing by average spectral misfit[J]. American Journal of Science, 2007, 307: 773-792.
41 MEYERS S R. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: an inverse approach for astrochronologic testing and time scale optimization[J]. Paleoceanography, 2015, 30(12): 1 625-1 640.
42 LI M S. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179.
43 JOSSO P, van PEER T, HORSTWOOD M S A, et al. High-resolution LA-MC-ICP-MS Pb isotope data (65.5-63 Ma) for Tropic Seamount, Atlanticnorth-east, and Matlab and R processing scripts for cyclostratigraphic analysis[J]. British Geological Survey,2020. DOI:10.5285/7a9eb43f-a5c4-450c-9fe1-c60f2703a1d1 .
44 CHRISTENSEN J N, HALLIDAY A N, GODFREY L V, et al. Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts[J]. Science, 1997, 277(5 328): 913-918.
45 LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
46 LI M, HINNOV L A, HUANG C, et al. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing[J]. Nature Communications, 2018, 9. DOI:10.1038/s41467-018-03454-y .
47 JAKUBOVITZ D, GIRYES R, RODRIGUES M R D. Generalization error in deep learning[M]// Compressed sensing and its applications. Birkhäuser, Cham, 2019: 153-193.
48 HINNOV L A. Cyclostratigraphy and astrochronology in 2018[J]. Stratigraphy & Timescales, 2018, 3: 1-80.
[1] 王勇生, 马威威, 杨隽豪, 白桥. 大别造山带晚古生代再循环锆石:合肥盆地新生代基性岩锆石 LA-ICP-MS U-Pb定年和 Hf同位素证据[J]. 地球科学进展, 2023, 38(1): 70-85.
[2] 杨隽豪, 王勇生, 白桥, 马威威. 合肥盆地中部中—新生界沉积岩碎屑锆石 LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2022, 37(8): 871-880.
[3] 赵奇,闫义. 伊利石 K-Ar/Ar-Ar年龄约束浅地表断层活动时间:原理和潜力[J]. 地球科学进展, 2021, 36(7): 671-683.
[4] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[5] 田自强, 王勇生, 胡召齐, 白桥. 大别造山带内部变沉积岩锆石LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
[6] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[7] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(9): 922-939.
[8] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[9] 辛补社,杨华,王多云,付金华,姚泾利,罗安湘,张瑜. 甘肃靖远王家山地区凝灰岩锆石U-Pb年龄及地层对比意义[J]. 地球科学进展, 2013, 28(9): 1043-1048.
[10] 简星, 关平, 张巍. 碎屑金红石:沉积物源的一种指针[J]. 地球科学进展, 2012, 27(8): 828-846.
[11] 杨红梅,蔡红,段瑞春,刘重芃,张利国,梅玉萍,段桂玲. 硫化物Rb-Sr同位素定年研究进展[J]. 地球科学进展, 2012, 27(4): 379-385.
[12] 余吉远,李向民,马中平,孙吉明,王建强. 青海省祁连县清水沟-白柳沟矿田含矿火山岩系年代学研究[J]. 地球科学进展, 2010, 25(1): 55-60.
[13] 张沛,周祖翼. 碎屑矿物热年代学研究进展[J]. 地球科学进展, 2008, 23(11): 1130-1140.
[14] 裴先治,刘战庆,丁仨平,李佐臣,李高阳,李瑞保,王 飞,李夫杰. 甘肃天水地区百花岩浆杂岩的锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2007, 22(8): 818-827.
[15] 向华,张利,钟增球,周汉文,曾雯. 榍石:U-Pb定年及变质P-T-t轨迹的建立[J]. 地球科学进展, 2007, 22(12): 1258-1267.
阅读次数
全文


摘要