地球科学进展 ›› 2008, Vol. 23 ›› Issue (7): 675 -681. doi: 10.11867/j.issn.1001-8166.2008.07.0675

流域生态水文研究现状和前沿 上一篇    下一篇

内陆河流域山区水文与生态研究
康尔泗 1,陈仁升 1,张智慧 1,2,吉喜斌 1,2,金博文 1,2   
  1. 1.中国科学院寒区旱区环境与工程研究所黑河生态水文与流域集成管理研究实验室,甘肃 兰州 730000;2.中国科学院临泽内陆河流域研究站,甘肃 兰州 730000
  • 收稿日期:2008-05-05 修回日期:2008-06-10 出版日期:2008-07-10
  • 通讯作者: 康尔泗 E-mail:eskang@lzb.ac.cn
  • 基金资助:

    国家自然科学基金重点项目“黑河流域生态—水文过程研究集成”(编号:90702001);中国科学院知识创新工程重大项目“黑河流域水—生态—经济系统综合管理试验示范”(编号:KZCX1-09);中国科学院知识创新工程重要方向项目“黑河流域水循环与水资源管理研究”(编号:KZCX2-XB2-04)资助.

Some Problems Facing Hydrological and Ecological Researches in the Mountain Watershed at the Upper Stream of An Inland River Basin

Kang Ersi 1,Chen Rensheng 1,Zhang Zhihui 1,2,Ji Xibin 1,2,Jin Bowen 1,2   

  1. 1.Heihe Laboratory of Ecohydrology and Integrated Basin Management, Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000,China;2.Linze Inland River Basin Research Station, CAS, Lanzhou 730000,China
  • Received:2008-05-05 Revised:2008-06-10 Online:2008-07-10 Published:2008-07-10
以河西走廊黑河干流山区流域为例,从山区水文循环、水文与生态系统以及径流形成和预测等方面讨论山区流域水文和生态相互作用研究的有关问题。山区降水的空间和时间分布规律和固态、液态降水组成变化主要受制于海拔和地形的影响,而不同海拔和地形条件下的下垫面不同土地覆被和复杂的空间异质性则主要影响蒸散发量。对内陆河山区流域的水文小循环的研究,有助于进一步研究和认识内陆河流域上、中、下游水文和生态系统的相互联系问题。至今,对山区水文过程与生态系统的相互作用问题的研究还非常薄弱,需要研究山区森林草地生态系统在山区水文循环中的作用以及在维持和保护山区生态和环境中的作用和意义。内陆河流域山区水文过程复杂而综合性强,须加强对山区径流形成机理的多学科交叉研究,不断改善出山径流对气候变化和人类活动响应过程的模拟和预测水平。

Taking the mountain watershed at the upper stream of the Heihe River in the Hexi Corridor area in northwest China as an example, some problems with relation to hydrological and ecological researches are discussed from the aspects of mountain hydrological cycle, hydrology and ecosystems, runoff generation and prediction. The spatial and temporal distribution of precipitation and its composition of solid and liquid form are mainly influenced by elevation and topography in the mountains, while evapotranspiration is mainly influenced by various land cover and heterogeneity of underlying surfaces under different elevation and topographic conditions.
The basic characteristics of hydrological cycle and water balance of an inland river basin rest with the fact that the runoff does not run out off from the basin, and the normal annual precipitation and evapotranspiration are equal, forming the local hydrological cycle system: water vapor transportation→precipitation→runoff→evapotranspiration→water vapor transporation. The investigation of this local hydrological cycle redounds to the understanding of the interrelationship of hydrological and ecological processes between the areas at the upper, middle and lower streams of an inland river.
As yet the researches are very inadequate on mountain hydrological and ecological processes and their interactions. In the mountain glaciers, snow and permafrost zone, the researches should be put on the hydrological conditions to maintain the alpine meadow growing. In the mountain vegetation zone, the ecosystems of mountain forest and grass land should be studied on for their functions in the mountain hydrological cycle and for their role in maintaining and protecting the mountain ecosystems and environment. In this way, we can understand as a whole the interactions between hydrological processes and ecosystems and their environmental significance.
The hydrological processes of an inland river basin are very complex, multidisciplinary and comprehensive. The measurements and researches should be strengthened on the various hydrological processes to understand the mechanism of the mountain runoff generation. In this aspect, ground measurements and remote sensing monitoring are mutual compensatory. Based on this, the physical distributed hydrological models should be developed to reflect the complex mountain hydrological processes. In order to bring the measured data into play fully in the simulation, the mountain hydrological data assimilation system should be developed to form the hydrological modeling system. Furthermore, the researches on and developing of the coupled regional atmospheric and hydrologic models should be carried out in the mountain watershed scale. In this way, the incessant improvements of the response simulation and modeling prediction of mountain runoff change will be achieved under the climate change and human activities.

中图分类号: 

[1] Kang Ersi. Review and prospect of studies on hydrology of cold and dry regions in China [J]. Journal of Glaciology and Geocryology1998203:238-244.[康尔泗. 寒区和旱区水文研究的回顾和展望[J]. 冰川冻土,1998203):238-244.]

[2] Kang ErsiYang ZhenniangLai Zuminget al. Glacier runoff and its modeling [C]Shi Yafenget aleds. Glaciers and Related Environments in China. Beijing: Science Press2008: 261-316.

[3] Kang ErsiCheng GuodongSong Kechaoet al. Simulation of energy and water balance in Soil-Vegetation-Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of northwest China [J]. Science in ChinaSeries D),2005484:538-548.[康尔泗,程国栋,宋克超,等. 河西走廊黑河山区土壤植被大气系统能水平衡模拟研究[J]. 中国科学:D辑,2005346):544-551.]

[4] Chen RenshengKang ErsiYang Jianpinget al. A distributed runoff model for inland river mouintainous basin of northwest China [J]. Journal of Desert Research2004244: 416-424.[陈仁升,康尔泗,杨建平,等.内陆河流域分布式水文模型——以黑河干流山区建模为例[J]. 中国沙漠,2004244):416-424.]

[5] Chen RenshengLü ShihuaKang Ersiet al. A distributed water-heat coupledDWHC model for mountainous watershed of an inland riber basinI: Model structure and equations [J]. Advances in Earth Science2006218:806-818.[陈仁升,吕世华,康尔泗. 内陆河高寒山区流域分布式水热耦合模型I:模型原理[J]. 地球科学进展,2006218):806-818.]

[6] Chen RenshengKang ErsiLü Shihuaet al. A distributed water-heat coupledDWHC model for mountainous watershed of an inland river basinII: Model results using the measured data at the meteorological & hydrological stations [J]. Advances in Earth Science2006218:819-829.[陈仁升,康尔泗,吕世华,等.内陆河高寒山区流域分布式水热耦合模型:地面资料驱动结果[J]. 地球科学进展,2006218:819-829.]

[7] Chen RenshengGao YanhongKang Ersiet al. A distributed water-heat coupledDWHC model for mountainous watershed of an inland river basinIII: Model results using the results from MM5 model [J]. Advances in Earth Science2006218:830-837.[陈仁升,高艳红,康尔泗,等.内陆河高寒山区流域分布式水热耦合模型:MM5嵌套结果[J].地球科学进展,2006218):830-837.]

[8] Gao YanhongLü ShihuaCheng Guodong. Simulation of rainfall-runoff and watershed convergence process in the upper reaches of Heihe river basinJuly 2002 [J]. Science in China Series D),200447suppl.I: 1-8.[高艳红,吕世华. 20027月黑河流域上游降水以及产、汇流过程的模拟[J]. 中国科学:D辑,200333(增刊):1-8.]

[9] Kang ErsiChen RenshengZhang Zhihuiet al. Some scientific problems facing researches on hydrological processes in an inland river basin [J]. Advances in Earth Science2007229:940-953.[康尔泗,陈仁升,张智慧,等.内陆河流域水文过程研究的一些科学问题[J]. 地球科学进展,2007229:940-953.]

[10] Roger C BJeff DNoah P Met al. Mountain Hydrology of the Semi-Arid Western US [R].Vision PapersPapersNews and Technical Reportshttp://www.cuahsi.org2004.

[11] Jong CCollins DRanzi Reds. Climate and hydrology in Mountain Areas [M]. ChichesterEngland: John Wiley & SonsLtd2005: 1-306.

[12] Kang ErsiCheng GuodongLan Yongchaoet al. A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes [J]. Science in ChinaSeries D),199942suppl.I:52-63.[康尔泗,程国栋,蓝永超,等.西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型[J].中国科学:D辑,199929(增刊1):47-54.]

[13] Kang ErsiCheng GuodongLan Yongchao. A model for the projection of mountain runoff change[C]Kang Ersiet al. eds. Glacier-Snow Water Resources and Mountain Runoff in the Arid Area of Northwest China. Beijing: Science Press2002: 270-294.[康尔泗,程国栋,蓝永超. 出山径流变化趋势预测模型[C]康尔泗等主编.中国西北干旱区冰雪水资源与出山径流. 北京:科学出版社,2002:270-294.]

[14] Wang KeliCheng GuodongXiao Honglanget al. The westerly fluctuation and water vapor transport over the Qilain-Heihe valley [J]. Science in ChinaSeries D),200447suppl.: 32-38.[王可丽,程国栋,肖洪浪,等.西风波动与祁连山黑河流域的水汽输送[J]. 中国科学:D辑,200333(增刊):31-36.]

[15] Jin Bowen. A study of climatic and hydrological effect and ecological function of forests in the Qilian mountains [D]. Beijing: Post Graduate SchoolChinese Academy of Sciences2007:14-20. [金博文.祁连山水源涵养林气候、水文和生态功能试验研究[D].北京:中国科学院研究生院,2007:14-20.]

[16] Liu ChaohaiWang ZongtaiPu Jianchenet al. Glaciers and their distribution in China [C]Shi Yafenget al. eds. Glaciers and Their Environments in China. Beijing: Science Press2000: 44.[刘潮海,王宗太,蒲键辰,等.中国冰川及其分布特征[C]施雅风等主编. 中国冰川与环境.北京:科学出版社,2000:44.]

[17] Jin HuijunWang Jinye. Role of permafrost and water retaining forests in the mountain runoff formation [C]Kang Ersiet al. eds. Glacier-Snow Water Resources and Mountain Runoff in the Arid Area of Northwest China. Beijing: Science Press2002:125-155.[金会军,王金叶.冻土和水源涵养林在径流形成中的作用[C]康尔泗等主编.中国西北干旱区冰雪水资源与出山径流. 北京:科学出版社,2002:125-155.]

[1] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
[2] 范小杉. 国际社会对生态系统服务研究误区的研讨综述[J]. 地球科学进展, 2021, 36(6): 616-624.
[3] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[4] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[5] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[6] 葛玉娟,赵宇鸾,任红玉. 山区耕地细碎化对不同利用方式农地集约度的影响[J]. 地球科学进展, 2020, 35(2): 180-188.
[7] 刘小茜,裴韬,舒华,高锡章. 基于文献计量学的社会—生态系统恢复力研究进展[J]. 地球科学进展, 2019, 34(7): 765-777.
[8] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[9] 范小杉, 何萍. 河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[10] 李哲, 陈永柏, 李翀, 郭劲松, 肖艳, 鲁伦慧. 河流梯级开发生态环境效应与适应性管理进展[J]. 地球科学进展, 2018, 33(7): 675-686.
[11] 王文科, 宫程程, 张在勇, 陈立. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018, 33(7): 702-718.
[12] 丁永建, 张世强. 西北内陆河山区流域内循环过程与机理研究: 现状与挑战[J]. 地球科学进展, 2018, 33(7): 719-728.
[13] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[14] 马学成, 巩杰, 柳冬青, 张金茜. 社会生态系统研究态势:文献计量分析视角[J]. 地球科学进展, 2018, 33(4): 435-444.
[15] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
阅读次数
全文


摘要