地球科学进展 ›› 2004, Vol. 19 ›› Issue (3): 393 -398. doi: 10.11867/j.issn.1001-8166.2004.03.0393

研究论文 上一篇    下一篇

成矿流体输运物理机制研究的关键难题与方法体系
邓军 1;王庆飞 1;黄定华 2   
  1. 岩石圈构造、深部过程及探测技术教育部重点实验室,中国地质大学,北京 100083; 中国地质大学地球科学学院,湖北 武汉 430074
  • 收稿日期:2004-04-09 修回日期:2004-04-30 出版日期:2004-12-20
  • 通讯作者: 邓军(1958-),男,教授,湖北武汉人,主要从事区域构造、成矿流体及成矿动力学的教学和科研工作. E-mail:E-mail:djun@cugb.edu.cn
  • 基金资助:

    国家自然科学基金项目“构造体制转换与流体多层循环动力学”(编号:40172036);教育部科学技术研究重点项目(编号:01037);国家重点基础研究发展规划项目“大规模成矿作用及大型矿集区预测”(编号:1999043206);国家自然科学基金重点项目“大陆演化过程过程中成矿系统的形成与保存——典型矿集区剖析”(编号:40234051)资助

THE KEY PROBLEM AND RESEARCHING METHODS OF THE TRANSPORTATION AND LOCATING PROCESSES OF METALLOGENIC FLUID

DENG Jun 1, WANG Qingfei 1, HUANG Dinghua 2   

  1. 1.Key Laboratory of Lithospheric Tectonics and Exploration Ministry of Education,China University of Geosciences, Beijing 100083,China; 2. China University of Geosciences, Wuhan 430074,China
  • Received:2004-04-09 Revised:2004-04-30 Online:2004-12-20 Published:2004-06-01

流体的物质来源,流体活化→迁移→聚集→沉淀过程的化学机理,流体输运与定位过程的物理机制,可视为构造-流体-成矿系统这一课题研究中的主要问题。相对于前两个基本方面的研究进展而言,流体的输运与定位过程的物理机制仍然是矿床学研究中一个重要难题。流体输运物理规律的研究方法主要包括定性分析、定量模拟和相似物理实验等。定性分析主要是对大量地质现象的高度概括和科学升华,分析结果表明成矿流体,尤其是多相热流体在给定三维动态形变场中的运移趋势及定位规律是成矿流体输运物理机制研究的关键问题;但由于逻辑推理和经验判断在定性研究中扮演了重要角色,定性研究的结果显得抽象和过于概略,不能详尽地阐明流体输运的物理过程。而定量模拟难以把握成矿期介质渗透率及成矿应力场的动态变化,使其与实际地质对象在物理性质上具有一定差距。物理实验虽能处理二维动态构造形变场中流体输运问题,但由于实验条件的限制,难以处理三维空间内流体运移问题。因而,上述 3种研究手段优势互补,它们的交错应用及结论间的相互对比与验证,将有望解决流体输运与定位过程物理机制研究中的重要问题。

The major focuses in the domain of structure-fluid-metallogenism system include the origin of metallogenic marerials, the chemical mechanism of activation, transportation and precipitation of metallogenic elements and the physic process of geofluid’s transportation and locating. Comparing with the other two focuses, the process physic of the geofluid's movement bears more difficulty and questions for the researchers. The current methods for the study of physic process of the geofluid's movement mainly consist of qualitative analysis, numerical simulation and analogue experiment. Based on the generalization and reasoning of basic geological phenomena, qualitative analysis indicate that the key problem of geofluid's transportation process is the physic mechanism of transportation process of polyphase fluid in the 3D dynamical structural frame. Yet this key problem goes beyond the extent of the research ability of the qualitative analysis method. Because the numerical simulation method neglects the dynamical change of penetrability and stress field during metallogenic process, it is devoid of the similitude to the reality and failed to deal with the problem too. Although the analogue experiment can simulate the transportation process of polyphase fluid in the 2D dynamical structural frame, it can't carry out the 3D experiment because of the limitation of the experimental conditions. But in virtue of the mutual complementary advantages of the three methods, the colligated application of those methods can discover the physic mechanism of transportation process of polyphase fluid in the 3D dynamical structural frame.

中图分类号: 

[1]Deng Jun(邓军), Lü Guxian(吕古贤), Yang Liqiang(杨立强), et al.The transformation of tectonic stress field and interfacial metallogensis[J].Acta Geosicentia Sinica(地球学报), 1998,19(3): 244-250(in Chinese).
[2]Deng Jun(邓军), Sun Zhongshi(孙忠实), Wang Jianping(王建平), et al.Dynamic system transformation and gold ore-forming process[J]. Mineral Deposits(矿床地质), 2001,20(1): 71-77(in Chinese).
[3]Zhai Yusheng(翟裕生), Lü Guxian(吕古贤). Transition of tectonic and dynamic regime and mineralization[J]. Acta Geosicentia Sinica(地球学报),2002,23(2):97-102(in Chinese).
[4]Sibon R H. Tectonic controls on maximum sustainable overpressure fluid redistribution from stress transition[J]. Journal of Geochemical Exploration, 2000,69~70:471-475.
[5]Zhai Yusheng(翟裕生), Zhang Hu(张湖), Song Honglin(宋鸿林), et al.Macroscopic Structures and Superlarge Ore Deposits[M]. Beijing: Geological Publishing House, 1997. 150-151(in Chinese).
[6]Zhai Yusheng(翟裕生), Deng Jun(邓军),Li Xiaobo(李晓波). Regional Metallogeny[M].Beijing: Geological Publishing House,1999.287(in Chinese).
[7]Xu Jiuhua(徐九华), Xie Yuling(谢玉玲), Shen Shiliang(申世亮). Tectonic environment of hydrothermal gold deposits[J]. Acta Geosicentia Sinica(地球学报),1998,1 (2): 204-209(in Chinese).
[8]Yang Weiran(杨巍然), Zhang Wenhuai(张文淮). Tectonic fluids—A new research domain[J]. Earth Science Frontiers(地学前缘), 1996, 21(3): 286-290(in Chinese).
[9]Hubbert M K,Rubey W W. Roles of fluid pressure in mechanics of overthrust faulting[J]. AAPG Bulletin,1959,70 :167-206.
[10]Bryant D G. Intrusive breccias associated with ore,warren (Bisbee) mining district,Arizona[J].Economic Geology,1968,63(1):1-12.
[11]Norton D L,Cathles L M. Breccia pipes,products of exsolved vapor from magmas[J]. Economic Geology,1973,68(3):540-546.
[12]Paul D Bons. The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures[J].Tectonophysics, 2001,336:1-17.
[13]Tobin H,Vannucchil P,Meschede M.Structure, inferred mechanical properties, and implications for fluid transport in the decollement zone, Costa Rica Convergent Margin[J]. Geology,2001,29(10):907-910.
[14]Liu Junlai(刘俊来), Ma Lijie(马立杰), Cui Yingchun(崔迎春), et al. Fluid flow and brittle to ductile transition of limestone under crustal conditions[J]. Earth Science Frontiers(地学前缘), 2001,8(3):171-176(in Chinese).
[15]Wintsch R P,Christoffersen R,Kronenberg A K. Fluid-rock reaction weakening of fault zone[J].Journal of Geophysical Reaserch,1995,100(7):13 021-13 032.
[16]Wawrzyniec T,Selverstone J,Axen G J. Correlations between fluid composition and deep-seated structural style in the footwall of the simplon low-angle normal fault, Switzerland[J].Geology,1999,27(8):715-718.
[17]Read J J,Meinert L D. Goldbearing quartz vein mineralization atthe Big Hurrah Mine,Seward Peninsula,Alaska[J].Economic Geology,1986,81:1 760-1 764.
[18]Robert E,Kelly W C. Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma Mine,Abitibi Green-stone belt,Quebec,Canada[J]. Economic Geology,1987,82:1 464-1 482.
[19]Walsh J F,Kesler S E. Fluid inclusion geochemistry of high-grade,vein-hosted gold ore at the Pamour Mine,Porcu-pire Camp,Ontario[J]. Economic Geology,1988,83:1 347-1 367.
[20]Craw D. Fluid evolution, fluid immiscibility and gold deposition during Cretaceous-Recenttectonics and uplift of the Otago and Alpine Schist,New Zealand[J]. Chemical Geology,1992,82:221-236.
[21]Guha J,Lu H Z,Dube B, et al. Fluid Characteristics of vein and altered wall rock in Archean mesothermal gold deposits[J]. Economic Geology,1991,86:667-684.
[22]Craw D,Teagle D A H,Belocky R. Fluid immiscibility in late-Alpine gold-bearing veins,eastern and northwestern European Alps[J]. Mineralium Deposita,1993,28:28-36.
[23]Bower T S. The deposition of gold and other metals: Press-induced fluid immiscibility and associated stable signatures[J]. Geochimica et Cosmochimica Acta, 1991, 55:2 417-2 434.
[24]De-Bremond-d-Ars-Jean, Arndt-Nicholas-T, Hallot-Erwan. Analog experimental insights into the formation of magmatic sulfide deposits[J]. Earth and Planetary Science Letters, 2001,186(3~4): 371-381.
[25]Tang Zhongli(汤中立), Li Wenyuan(李文渊). Metallogeny study and prospect of the nickel sulfide deposits in China[J] . Mineral Deposits(矿床地质), 1991,10 (3) : 193-203(in Chinese).
[26]Rui Zongyao(芮宗瑶), Li Yinqing(李荫清), Wang Longsheng(王龙生), et al. Preliminary discussion on ore-forming fluids and enrichment systems of metallic minerals[J] .Mineral Deposits(矿床地质),2002,21(1):83-90(in Chinese).
[27]Chen Bangguo(陈邦国), Jiang Zhangping(姜章平), Zhang Weiping(张卫平).Study on altered fluids of diplogenetic stratified copper hydrothermal solution in Dongguashan, Anhui province[J] . Jiangsu Geology(江苏地质), 2002, 26(2):65-69(in Chinese).
[28]Snow D T. Anisotropic permeability of fractured media[J]. Water Resources Research, 1969, 5(6): 1 273-1 289.
[29]Long J C S,Remer J S, Wilson C R, et al. Porous media equivalents for net-works of discontinuous fractures[J]. Water Resouces Research,1982,18(3):645-658.
[30]Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resources Research,1986,22(13):1 845-1 856.
[31]Yang Jianven, Latythev K, Edwards R N.Numerical computation of hydrothermal fluid circulation in fractured Earth structures[J]. Geophysical Journal International, 1998,135(2):627-649.
[32]Sibson R H. Structural permeability of fluid-driven fault-fracture meshes[J].Journal of Structural Geology, 1996,18(8):1 031-1 042.
[33]Rouleau A,Gale J E. Statistical characterization of the fracture system in the Stripa Granite, Sweden[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1985,22(6):353-367.
[34]Odling N E, Webman I.A “conductance” mesh approach to the permeability of natural and simulated fracture patterns[J]. Water Resources Research, 1991, 27(10):2 633-2 643.
[35]Deng Jun, Fang Yun, Yang Liqiang, et al. Numerical modelling of ore-forming dynamics of fractal dispersive fluid systems[J]. Acta Geologica Sinica, 2001,75(2):220-232.
[36]Tang Y W. The effect of tortuosity on fluid flow through a single fracture[J].Water Resources Research,1984,20(9):1 209-1 215.
[37]Zhang Youtuan, Liu Zhong. Hydraulic behavior of rock fractures analyzed by using fractal[A]. In: Liu Huaiheng, ed. Proceedings of International Symposium on Application of Computer Method in Rock Mechanics and Engineering[C]. Xi’an: Shaanxi Science and Technology Press,1993.427-434.
[38]Warren J E, Root P J. The behavior of naturally fractured reservoirs[J]. Journal of Society Petroleum Engineering,1963,(3):245-255.
[39]Bibby R. Mass transport of solutes in dual-porosity media[J]. Water Resources Research, 1981, 17(4):1 075-1 081.
[40]Neretnieks I, Rasmuson A. Diffusion in the rock matrix: An important factor in radionudide retardation[J].Journal of Geophysical Research, 1980, 85(B8): 4 379-4 397.
[41]Zimmerman R W, Chen G, Hadgu Tekluetal. A numerical dual-porosity model with asemi-analytical treatment of fracture/matrix flow[J]. Water Resources Research, 1993, 29(7): 2 127-2 137.
[42]Robinson J W,Gale J E. A laboratory and numerical investigation of solute transport in discontinuous fracture systems[J].Ground Water,1990,28(1):25-36.
[43]Neuman S P. Generalized scaling of permeabilities: Validation and effect of support scale[J].Geopysical Research letters, 1994, 1:349-352.
[44]Neuman S P. Univeral scaling of hydraulic conductivities and dispersivities in geological media[J]. Water Resources Research,1990,26:1 749-1 758.
[45]Gavrilenko P, Gueguen Y F. Flow in fractured medi: A modified renormalization method[J]. Water Resources Research,1998,34(2):177-191.
[46]Walsh J B, Brace W F. The effect of pressure on porosity and the transport properties of rock[J]. Journal of Geophysical Research,1984,89:9 425-9 431.
[47]Jiang Z W, Nicholas H S, Terence D, et al. Numerical modeling of fault-controlled fluid flow in the genesis of tin deposits of the Malage ore field, Gejiu mining district, China[J]. Economic Geology, 1997,92:228-247.
[48]Itasca Consulting Group Inc. Universal distinct element code: Minneapolis, Minnesota, Itasca Consulting Group, Technical Manual, 1993.
[49]Harper T R, Last N C. Response of fractal rock subject to fluid injection, Part 2: Characteristic behavior[J]. Tectonophysics, 1990,172:33-51.
[50]Harper T R, Last N C. Response of fractal rock subject to fluid injection, Part 3: Practical application[J]. Tectonophysics, 1990,172:53-65.
[51]Zhang X, Sanderson D J. Numerical modeling of the effects of fault slip on fluid flow around extensional faults[J]. Journal of Structural Geology,1996,18:109-119.
[52]Huang Dinghua(黄定华),Xiang Shuyuan(向树元),Zhu Yunhai(朱云海). Cryptoexplosive mechanics and its significance for mechanism of mineralization[J]. Geological Science and Technology Information(地质科技情报), 1997, 16(1): 77-80(in Chinese).
[53]Jügen E Streit, Stephen F Cox. Evolution of fracture networks in shear zones: Insights from see-through experiments on biphenyl aggregates[J].Journal of Structural Geology,2002,24:107-122.
[54]Jean De Bremond d’Ars, Nicholas T Arndt, Erwan Hallot. Analog experimental insights into the formation of magmatic sulfide deposits[J]. Earth and Planery Science Letters, 2001,186:371-381.
[55]Deng Jun(邓军),Yang Liqiang(杨立强),Zhai Yusheng(翟裕生),et al. Theoretical framework and methodological system of tectonics-fluid-mineralization system and dynamics[J].Earth Science—Journal of China University of Geosciences(地球科学——中国地质大学学报),2000,25(1): 71-78(in Chinese).

[1] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[2] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[4] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[5] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[6] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[7] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[8] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[9] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[10] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[11] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[12] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
[13] 孙运宝, 赵铁虎, 秦柯. 南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J]. 地球科学进展, 2014, 29(9): 1055-1064.
[14] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[15] 薛羽君,白爱娟,李 典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展, 2012, 27(8): 885-894.
阅读次数
全文


摘要