地球科学进展 ›› 1998, Vol. 13 ›› Issue (3): 285 -290. doi: 10.11867/j.issn.1001-8166.1998.03.0285

干旱气候变化与可持续发展 上一篇    下一篇

植物碳同位素分馏作用与环境变化研究进展
李相博 1,陈践发 2   
  1. 1.中国石油天然气总公司西北地质研究所 兰州 730020;2.中国科学院兰州地质研究所 兰州 730000
  • 收稿日期:1997-06-10 修回日期:1997-10-21 出版日期:1998-06-01
  • 通讯作者: 李相博
  • 基金资助:

    国家自然科学青年基金项目“若尔盖泥炭中苔草的碳氢同位素与古气候关系的研究”(项目编号: 49673179) 资助。

ADVANCES IN STUDY ON PLANT CARBON ISOTOPE DISCRIMINATION AND ENVIRONMENT CHANGE

Li Xiangbo 1,Chen Jianfa 2   

  1. 1.North West Institude of Geology, CNPC, Lanzhou  730020;2.Lanzhou Institude of Geology, CAS, Lanzhou  730000
  • Received:1997-06-10 Revised:1997-10-21 Online:1998-06-01 Published:1998-06-01

在简述植物碳同位素与环境要素之间关系的基础上,介绍了植物碳同位素分馏机理和分馏模式,并综述了近年来利用植物碳同位素及其组成在研究环境变化方面的研究进展,同时对未来的研究作了展望。

Global change has become an world wide concerned problem in the recent years. Since plants preserved a lot of information that can reflect the change of natural environment, the study of their carbon isotope discrimination becomes an important field in the research of global change. This paper tentatively discusses the mechanism, the model of plants carbon isotope discrimination and the progress in environmental change research. At the same time, research direction of plants carbon isotope in the future is introduced,too.

中图分类号: 

[1] Galimov E M. The Biological Fractionation of Isotopes. New York: A cademic Press, INC, 1985. 658~660.
[2] Park R, Epstein S. Carbon isotope fraction during photosythesis. Geochim Cosmochim Acta, 1960, 27(1/2): 110~126.
[3] Degens E T. Biogeochemistry of stable carbon isotopes.In:Eghinton G,Murphy M T,eds.Organic Geochemistry. Heideberg: Springer-verlag, 1969.304~329.
[4] Degens E T, Behrend M, Gotthardt B, et al. Metabolic fractionation of carbon isotopes in marine plankton. Ⅱ: data on samples collected off the coast of peru and ecuador. Deep Sea Res, 1968, 15: 11~20.
[5] 涂大正主编. 植物生理学. 长春: 东北师大出版社, 1989.
[6] Farquhar G D, Oleary M H, Berry J A. On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Aust J Physiol, 1982, 9: 121~137.
[7] Keeling C D. A mechanism for cyclic enrichment of carbon-12 by terrestrial plants. Geochim Cosmochim Acta, 1961,24: 299~313.
[8] O′Leary M H.Carbon fractionation in plants.Phytochemistry,1981,20:553~567.
[9] Schleser G H, Jayasekera R. δ13C variations of leaves in forests as an indication of reassimilated CO2 from the soil. Oecologia, 1985, 65:536~542.
[10] Vogel J C. Fractionation of carbon isotopes during photosynthesis. Heide berg: Springer-verlag, 1980. 801~830.
[11] Saurer M,Sigenthaler U.The climate-carbon isotope relationship in tree rings and the signficance of site conditions.Tellus, 1995, (46B): 320~330.
[12] Francey R J, Farquhar G D. An explanation of 13C/12C variations in tree rings. Nature, 1982, 295: 28~31.
[13] Brugnoli E, Hubick K T, Von Caemmerer S, et al. Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiol, 1988, 88: 1 418~1 424.
[14] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol, 1989, 40: 503~537.
[15] Stuiver M,Braziunas T F.Tree cell ulose 13C/12C isotope ratios and climatic change.Nature, 1987, (328): 58~60.
[16] Zimmerman J K,Ehleringer J R. Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid catasetum viridiflavam. Oecologia, 1990, (83): 247~249.
[17] Yakir D, Zssar A, Gat J, et al. 13C and 12C of wood from the Roman Siege rampart in Masada, Israel (AD70~73):evidence for a less arid climate for the region. Geochim Cosmochim Acta, 1988, 58: 3 335~3 539.
[18] Francey R J,Gifford R M,sharkey T D,et al.Physiological influences on carbon isotope discrimination in huon pine. Oecologia, 1985, 44:241~247.
[19] Kobrner C H, Farquhar G D. R oksandic Z.A global survey of carbon isotope discrimination in plants from high altitude. Oecologia,1988,74:623~632.
[20] KeeLing C D,Mook W G,Tans P P.Recent trends in the 13C/12C ratio of atmospheric carbon dioxide.Nature,1979, 277: 121~123.
[21] Vogel J C. Recycling of carbon in a forest environment. Oecol Plant, 1978, 13: 89~94.
[22] Medina E, Minchin P. Stratification of δ13C value of leaves in Amazonian  rain forests. Oecologia, 1980, 45: 377~378.
[23] Steven W,Leavitt.South American trees show declining δ13C trend.Tellus, 1994, 46B: 152~157.
[24] Kobrner C H, Farquhar G D, Wang S C. Carbon isotope discriminate by plants follows latitudinal and altitudinal trends. Oecologia, 1991,88: 30~40.
[25] Lipp J, Trimborn P, Fritz P, et al. Stable isotope in tree ring cellulose and climatic change. Tellus, 1991, 43B: 322
[26] Balesdent J. Site-related δ13C of tree leaves and soil organic matter in a temperate forest.Ecology, 1993, 74(6) :1 713~1 721.
[27] Farquhar G D, Wong S C. An empirical model of stomatal conductance. Aust J Plant Physiol, 1984, 11: 191~210.
[28] Ramesh R, Bhattacharya S K, Gopalan K. Climatic correlations in the stable isotope records of silver fir trees from kashmir. India Earth and Plantary Sci Lett, 1986, 79: 66~74.
[29] Wong S C,Cowan Z R,Farquhar G D.Leaf conductance in relation to rate of CO2 assimilation,influence of nitrogen nutrition, phosphora natrition, photo flux density and ambient partial pressure of CO2 during on togeny. Plant Physiol, 1985, 78: 821~825.
[30] Berry J, Troughton J H, Bjorkman O. Effect of oxygen concent ration during growth on carbon isotope discrimination in C3 and C4 species of Atriplex. Washington:Carnegie Institution Year Book, 1972, 71: 158~161.
[31] Brugnoli E,lauteri M. Effects of salinity on stomatal conductance,photo synthetic capacity,and carbon isotope discrimination of salt-tolerant and salt -sensitive C3 non-halophytes. Plant Physiol, 1991, 95: 628~635.

[1] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[2] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[3] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[4] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[5] 刘倩, 高辰晶, 赵元杰, 夏训诚. 塔克拉玛干沙漠南缘红柳沙包落叶阳离子含量及气候环境变化[J]. 地球科学进展, 2013, 28(12): 1326-1334.
[6] 史培军,李 宁,叶谦,董文杰,韩国义,方伟华. 全球环境变化与综合灾害风险防范研究[J]. 地球科学进展, 2009, 24(4): 428-435.
[7] 张虎才. 我国东北地区晚更新世中晚期环境变化与猛犸象—披毛犀动物群绝灭研究综述[J]. 地球科学进展, 2009, 24(1): 49-60.
[8] 曲建升,葛全胜,张雪芹. 全球变化及其相关科学概念的发展与比较[J]. 地球科学进展, 2008, 23(12): 1277-1284.
[9] 郑度,姚檀栋. 青藏高原隆升及其环境效应[J]. 地球科学进展, 2006, 21(5): 451-458.
[10] 姚檀栋,朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006, 21(5): 459-464.
[11] 刘燕华,葛全胜,方修琦,张雪芹. 全球环境变化与中国国家安全[J]. 地球科学进展, 2006, 21(4): 346-351.
[12] 赵生才. 中国全球环境变化研究[J]. 地球科学进展, 2005, 20(10): 1153-1156.
[13] 童庆禧. 空间对地观测与全球变化的人文因素[J]. 地球科学进展, 2005, 20(1): 1-005.
[14] 刘燕华;葛全胜;张雪芹. 关于中国全球环境变化人文因素研究发展方向的思考[J]. 地球科学进展, 2004, 19(6): 889-895.
[15] 张世涛,宋学良,张子雄,冯庆来,刘本培. 星云湖表层沉积物矿物组成及其环境意义[J]. 地球科学进展, 2003, 18(6): 928-932.
阅读次数
全文


摘要