地球科学进展 ›› 1993, Vol. 8 ›› Issue (1): 66 -71. doi: 10.11867/j.issn.1001-8166.1993.01.0066
探索与争鸣 上一篇 下一篇
收稿日期:
Meng Xianguo
Received:
Published:
评述了数学地质的发展现状,分析了非线性科学在数学地质中的地位和作用,根据地质数据的分形结构和混沌性质,探讨了非线性科学应用于数学地质的途径。
This paper reviewed present situation of mathematical geology, analysed position and action of nonlinear sciences in mathematical geology, according to fractal structure and chaos character of geological data, discussed the ways of application nonlinear sciences to mathematical geology.
[1]赵鹏大,胡旺亮,李紫金.矿床统汁预测.地质出版社,1983 [2]G M Philip and D F Watson. Probabilism in Geological data analysis. Ceo Mag, 1987,124(6) [3]郝柏林.世界是必然的还是偶然的—混沌现象的启示.科学,1991.43(4) [4]B B Mandelbrort.The fractal geometry of nature.Freeman,San Francisico,1982 [5]Meng Xianguo and Zheng Pengda. Fractal method for statistical analysis of geological data Journal of China Uiversity of Geosciences. 1991,2(1) [6]D H Mark, P E Aronson. Scale一dependent Fractal Dimensions of Topographic Surlace:on empirical Investigation.with application in geomorphology and computer mapping. Mathmatical Geology,1984,16(7) [7]Bruno and Raspa G.Geostatistical Characterization of fractal Models of Surface. Geostatistics,1989 .1 [8]D L T'urcott. Fractal in Geology and Geophysics. PAGEOPH,1989,131(1/2) [9]A Robert. Fractal Propcrties of Simulated bed Profiles in Goarse一grained Channels. Mathematical Geology,1991,23(3) [10]孟宪国,赵鹏大.地质数据的分形结构.地球科学.1991,16(2) [11]孟宪国,周有武,林碧英.方位一分维估值法.地球科学.1991,17(1) [12]赵鹏大,池顺都.初论地质异常.地球科学,1991,16(3) [13]井竹君.混沌简介.数学的实践与认识.1991.1 [14]黄立基,丁菊仁.多标度分形理论及进展.物理学进展,1991.11〔3) [15]赵鹏大.地质勘探中的统计分析.中国地质大学出版社.1986 [16]L M Sander.分数维形态的生长.科学(中译本),1987,(5) [17]Zhao Pengda and Meng Xianguo. Geological Anomaly and Mineral Predication.中国地学新进展(英文版),地质出版 社,1992