地球科学进展 ›› 2017, Vol. 32 ›› Issue (4): 409 -419. doi: 10.11867/j. issn. 1001-8166.2017.04.0409

上一篇    下一篇

ENSEMBLES耦合模式对全球陆地季风区夏季降水的年代际预测能力评估
张丽霞 1, 2( ), 张文霞 1, 3, 周天军 1, 3, 吴波 1   
  1. 1. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
    2. 南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏 南京 210044
    3.中国科学院大学,北京 100049
  • 收稿日期:2016-10-19 修回日期:2017-02-05 出版日期:2017-04-20
  • 基金资助:
    公益性行业(气象)科研专项项目“基于FGOALS-s、CMA和CESM气候系统模式的年代际集合预测系统的建立与研究”(编号:GYHY201506012);国家自然科学基金项目“20世纪全球季风变化模拟和未来变化预估”(编号:41330423)资助

Assessment of the Decadal Prediction Skill on Global Land Summer Monsoon Precipitation in the Coupled Models of ENSEMBLES

Lixia Zhang 1, 2, Wenxia Zhang 1, 3( ), Tianjun Zhou 1, 3, Bo Wu 1   

  1. 1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,Chian
    2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044,China
    3. University of Chinese Academy of Sciences, Beijing 100049,China
  • Received:2016-10-19 Revised:2017-02-05 Online:2017-04-20 Published:2017-04-20
  • About author:

    First author:Zhang Lixia(1982-),female,Baoding County, Hebei Province,Associate Professor.Research areas include changes of drought and flood over monsoon regions.E-mail:lixiazhang@mail.iap.ac.cn

  • Supported by:
    Foundation item:Project supported by the R&D Special Fund for Public Welfare Industry (Meteorology) “Development and research of ensemble decadal climate prediction system based on global climate models FGOALS-s, CAMS and CESM”(No.GYHY201506012);The National Natural Science Foundation of China “Global monsoon: 20 th Century change simulation and future change”(No: 41330423)

全球季风区降水对当地社会经济、全球大尺度环流及能量循环至关重要。采用欧洲联盟ENSEMBLES计划Stream 2的年代际回报试验,评估了其对1960—2015年全球陆地季风夏季降水年代际变化的回报能力,并探讨了北半球陆地季风区夏季(NHSM)降水年代际变化可预报性的可能来源。分析发现 ENSEMBLES对全球及南球陆地季风区夏季降水的年代际回报技巧不高,但其对NHSM降水具有一定的预报能力,能合理回报出观测中NHSM降水在1960年至1970s末期的减弱趋势和1990s之后的增强趋势,其缺陷在于模式中NHSM降水最小值出现在1970s末期,较之观测提前了近10年,未能回报出1980s中期至1990s初期NHSM的干旱期。mega-ENSO与大西洋多年代际振荡(AMO)是影响NHSM降水年代际变化的2个重要驱动因子。分析发现模式回报的NHSM降水与mega-ENSO、大西洋多年代际振荡(AMO)的正相关明显大于观测,能合理再现2个指数在1960年至1970s末期和1990s后的变化趋势,是模式对这2个时段内NHSM降水回报技巧的重要来源。虽然ENSEMBLES对AMO的年代际变化具有较高的回报能力(与观测的最大相关系数高达0.85),但是对mega-ENSO的回报技巧较弱,进而限制了模式1980s中期至1990s初NHSM的年代际预报技巧。因此,提高模式对mega-ENSO的预报能力,是提升NHSM降水年代际预报水平的重要途径。

Global monsoon precipitation plays a crucial role in the local social economy and global large-scale circulation and energy cycle. Using the decadal prediction output for 1960-2015 from ENSEMBLES Stream 2, the decadal hindcast skill of climate models on global land monsoon precipitation and the potential source of predictability were examined in this paper. It is found that the decadal variation of global and southern hemispheric land monsoon precipitation is not well hindcasted by ENSEMBLES. However, the Northern Hemispheric land Summer Monsoon (NHSM) precipitation in hindcast is well predicted, including the observed downward trend from 1960 to the late 1970s and upward trend since the 1990s. The main deficiency is that the minimum NHSM precipitation occured in mid-1970s, which is 10-year earlier than the observation, leading to poor prediction of NHSM precipitation from the mid-1980s to early 1990s. Mega-ENSO and Atlantic Multi-decadal Oscillation (AMO) are the two main factored that modulate the decadal variation of NHSM precipitation. The result shows that the relationships of NHSM precipitation with mega-ENSO and AMO in ENSENBLES are higher than the observation. The climate models well predicted the increase from 1960 to the late 1970s and decrease trend since the 1990s of mega-ENSO and AMO. It is the primary source of the prediction skill on NHSM changes during the two periods. Although AMO is well predicted by ENSEMBLES (highest correlation coefficient with observation is 0.85), the prediction skill of mega-ENSO is limited, leading to poor performance in predicting NHSM precipitation from the mid-1980s to early 1990s. Thus, improving the prediction of mega-ENSO can be seen as one important method of better decadal prediction of NHSM precipitation.

中图分类号: 

图1 ENSEMBLES多模式集合(MME)平均预测的(a) 第1~4 年和(b)第6~9年平均夏季降水距平与观测的相关系数分布
打点区域通过了10%显著性检验水平;其中北半球夏季是5~9月平均,南半球夏季是11月到来年3月平均
Fig.1 The correlation coefficient of summer precipitation anomalies between MME prediction and observation averaged over the hindcast years (a) 1~4 years and (b) 6~9 years
The dotted areas are statistically significant at 10% level;The summer precipitation in northern hemisphere and southern hemisphere is that averaged from May to September and from November to March, respectively
图2 ENSEMBLES多模式集合(MME)平均预测的(a) 第1~4 年和(b)第6~9年平均夏季降水距平与观测之间的均方根技巧评分(RMSSS)的水平分布
打点区域通过了10%显著性检验水平;其中北半球夏季是5~9月平均,南半球夏季是11月到来年3月平均
Fig.2 The distribution of Root Mean Square Skill Score (RMSSS)of summer precipitation anomalies between MME prediction and observation averaged over the hindcast years (a) 1~4 years and (b) 6~9 years
The dotted areas are statistically significant at 10% level; The summer precipitation in northern hemisphere and southern hemisphere is that averaged from May to September and from Novermber to March, respectively
图3 模式预测的陆地季风区区域平均的4年平均夏季降水距平与观测的相关系数随预报时长的变化
(a)北半球陆地季风区夏季降水;(b) 南半球陆地季风区夏季降水;(c)全球陆地季风区夏季降水。其中黑色实线和灰色虚线分别代表所有多模式集合(MME)平均和不同模式成员结果,全球季风区夏季降水是(a)与(b)的平均
Fig.3 The evolution of correlation coefficient between model predicted 4 years summer mean precipitation and that of observation regional average
(a) Northern hemispheric land monsoon;(b) Southern hemispheric land monsoon;(c) Global land monsoon regions. The black and dashed lines show the MME and individual realization, respectively. The global land monsoon summer precipitation is the average of (a) and (b)
图4 标准化之后模式预测的第(a) 1~4 年平均,(b)2~5年,(c)3~6年,(d)4~7年,(e)5~8年和(f)6~9年及相应年份观测的NHSM降水距平
黑色实线为观测,灰色实线和虚线分别代表多模式集合平均和每个模式成员结果
Fig.4 The normalized precipitation anomalies evolution regional averaged over northern hemispheric land monsoon region (black and blue lines) and northern hemispheric summer monsoon circulation (red and green lines) in observation and MME hindcast for the (a) 1~4 years, (b) 2~5 years, (c) 3~6 years, (d) 4~7 years, (e) 5~8 years and (f) 6~9 years
The black line, grey line and grey dashed lines denote the observation, multimodel ensemble mean and each realization, respectively
图5 模式预测的第1~4年和第6~9年平均的北半球夏季降水与mega-ENSO指数的相关系数(a),(c) 观测,(b),(d) MME
划线区域通过10%显著性检验,mega-ENSO指数定义为西太平洋K型区域平均的SST与东太平洋三角形区域平均的SST之差(具体区域见参考文献[7])
Fig.5 The correlation coefficient between model predicted precipitation in boreal summer and the corresponding mega-ENSO index for the 1~4 years (left panel) and 6~9 years (right panel) derived from (a),(c) observation, (b),(d) MME
The dotted areas are statistically significant at 10% level. The mega-ENSO index is defined as the SST difference between the western Pacific K-shape area and eastern Pacific triangle (The regions where the mega-ENSO defined can be found in reference[7])
图6 模式预测的第1~4年(a),(b)和第6~9年(c),(d)平均的北半球夏季降水与AMO指数的相关系数(a),(c) 观测,(b),(d) MME
划线区域通过10%显著性检验,AMO指数定义为(0°~60°N, 80°~0°W)区域平均SST距平与(60°S~60°N)区域平均SST距平之差 [ 27 ]
Fig.6 The correlation coefficient between model predicted precipitation in boreal summer and the corresponding AMO index for the 1~4 years(left panel) and 6~9 years (right panel) derived from (a),(c) observation, (b),(d) MME
The dotted areas are statistically significant at 10% level; The AMO index is defined as area-averaged SST anomalies in the (0°~60°N, 80°~0°W) minus the area-averaged near global SST anomalies in the (60°S~60°N) [ 27 ]
图7 标准化之后多模式集合平均预测的第(a) 1~4 年平均,(b)2~5年,(c)3~6年,(d)4~7年,(e)5~8年和(f)6~9年及相应年份观测的AMO指数和mega-ENSO指数距平
Fig.7 The normalized AMO and mega-ENSO indices evolutions in MME hindcast and observation for (a) 1~4 years, (b) 2~5 years, (c) 3~6 years, (d) 4~7 years, (e) 5~8 years and (f) 6~9 years
图8 模式预测的4年平均夏季(a) AMO指数与 (b)mega-ENSO指数与观测的相关系数随预报时长的变化
Fig.8 The evolution of correlation coefficient between model predicted 4 years summer mean (a) AMO index and (b) mega-ENSO index and that of observation
[1] Wang Shaowu.Global monsoon[J]. Advances in Climate Change Research, 1997, 6(6):473-474.
[王绍武. 全球季风[J].气候变化研究进展,1997, 6(6):473-474.]
[2] Fu Congbin, Zeng Zhaomei.Monsoon—The region with the largest variability of precipitation in the word[J].Chinese Science Bulletin, 1997, 42(21): 2 306-2 309.
[符淙斌, 曾昭美.季风区——全球降水变化率最大的地区[J]. 科学通报, 1997, 42(21): 2 306-2 309.]
[3] Zeng Qingcun, Zhang Banglin.On the seasonal variation of atmospheric general circulation and the monsoon[J]. Chinese Journal of Atmospheric Sciences, 1998, 22(6): 805-813.
[曾庆存, 张邦林.大气环流的季节变化和季风[J]. 大气科学, 1998,22(6): 805-813 ].
[4] Qian W.Dry/wet alteration and global monsoon[J]. Geophysical Research Letters, 2000,27(22): 3 679-3 682.
[5] Trenberth K, Stepaniak D, Caron J.The global monsoon as seen through the divergent atmospheric circulation[J]. Journal of Climate, 2000, 13(22): 3 969-3 993.
[6] Wang B, Ding Q.Global monsoon: Dominant mode of annual variation in the tropics[J]. Dynamics of Atmospheres and Oceans, 2008, 44(3): 165-183.
[7] Wang B, Liu J, Kim H, et al.Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation[J]. Proceedings of the National Academy of Sciences, 2013, 110(14):5 347-5 352.
[8] Zhang Lixia, Zhou Tianjun, Wu Bo, et al.The annual modes of tropical precipitation simulated by LASG/IAP ocean-atmosphere coupled model Fgoals_s1.1[J]. Acta Meteorological Sinica, 2008, 66(6): 968-981.
[张丽霞,周天军,吴波,等.气候系统模式FGOALS_s1.1 对热带降水年循环模态的模拟[J]. 气象学报,2008, 66(6): 968-981.]
[9] Zhang L, Zhou T.An assessment of monsoon precipitation changes during 1901-2001[J]. Climate Dynamics, 2011, 37(1/2): 279-296.
[10] Wang B, Ding Q.Changes in global monsoon precipitation over the past 56 years[J]. Geophysical Research Letters, 2006, 33(6),doi:10.1029-2005G2025347.
[11] Zhou T, Yu R, Li H, et al.Ocean forcing to changes in global monsoon precipitation over the recent half-century[J]. Journal of Climate, 2008, 21(15): 3 833-3 852.
[12] Hsu P, Li T, Luo J, et al.Increase of global monsoon area and precipitation under global warming: A robust signal?[J]. Geophysical Research Letters, 2012, 39(6),doi:10.1029/2012GL051037.
[13] Wang B, Liu J, Kim H, et al.Recent change of the global monsoon precipitation (1979-2008)[J]. Climate Dynamics, 2012, 39(5):1-13.
[14] Lin R, Zhou T, Qian Y.Evaluation of global monsoon precipitation changes based on five reanalysis datasets[J].Journal of Climate, 2014, 27(3): 1 271-1 289.
[15] Zhou T, Zhang L, Li H. Changes in global land monsoon area and total rainfall accumulation over the last half century[J]. Geophysical Research Letters, 2008,35(16):doi:10.1029/2008GL034881.
[16] Lee J,Wang B.Future change of global monsoon in the CMIP5[J]. Climate Dynamics, 2014, 42(1):101-119.
[17] Zhang L, Zhou T.An assessment of improvements in global monsoon precipitation simulation in FGOALS-s2[J]. Advances in Atmospheric Sciences, 2014, 31(1): 165-178.
[18] Kim H J, Wang B,Ding Q.The global monsoon variability simulated by CMIP3 coupled climate models[J]. Jounnal of Climate, 2008, 21(20): 5 271-5 294.
[19] Polson D, Bollasina M, Hegerl G, et al.Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols[J]. Geophysical Research Letters, 2014, 41(16): 6 023-6 029,doi:10.10021/2014GL060811.
[20] Liu F, Chai J, Wang B, et al.Global monsoon precipitation responses to large volcanic eruptions[J]. Scientific Reports, 2016, 6:1-11,doi:10.1038/Srep 24331.
[21] Meehl G, Goddard L, Boer G, et al.Decadal climate prediction an update from the trenches[J]. Bulletin of the American Meteorological Society, 2014, 95(2): 243-267.
[22] Wu B, Chen X, Song F, et al.Initialized decadal prediction by LASG/IAP climate system model FGOALS-s2: Evaluations of strengths and weaknesses[J]. Advances in Meteorology, 2015,doi:10.1155/2015/904826.
[23] Weisheimer A, Doblas-Reyes F, Palmer T, et al.ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions: Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs[J]. Geophysical Research Letters, 2009, 36(21): 1-6.
[24] Horris I, Jones P, Osborn T, et al.Updated high-resolution grids of monthly climatic observantions-the Cru TS3.10 Dataset[J]. International Journal of Climatology, 2014,34(3): 623-642,doi:10.1002/joc.3711.
[25] Smith T, Reynolds R, Peterson T, et al.Improvements NOAAs historical merged land-ocean temp analysis (1880-2006)[J]. Journal of Climate, 2008, 21(10):2 283-2 296.
[26] Doblasreyes F, Andreuburillo I, Chikamoto Y, et al.Initialized near-term regional climate change prediction[J]. Nature Communications, 2013, 4: 1-9,doi:10.1038/ncomms2704.
[27] Trenberth K, Shea D.Atlantic hurricanes and natural variability in 2005[J]. Geophysical Research Letters, 2006,33(12): 1-4.
[1] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[2] 金荣花,马杰,任宏昌,尹姗,蔡芗宁,黄威. 我国 1030天延伸期预报技术进展与发展对策[J]. 地球科学进展, 2019, 34(8): 814-825.
[3] 安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.
[4] 周天军, 吴波. 年代际气候预测问题:科学前沿与挑战[J]. 地球科学进展, 2017, 32(4): 331-341.
[5] 吴波, 周天军, 孙倩. 海洋模式初始化同化方案对IAP近期气候预测系统回报试验技巧的影响[J]. 地球科学进展, 2017, 32(4): 342-352.
[6] 满文敏, 周天军. IAP年代际预测试验中火山活动对太平洋海温预测技巧的影响[J]. 地球科学进展, 2017, 32(4): 353-361.
[7] 容新尧, 刘征宇, 段晚锁. 耦合模式中北太平洋和北大西洋海表面温度年代际可预报性和预报技巧的季节依赖性[J]. 地球科学进展, 2017, 32(4): 382-395.
[8] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[9] 翦知湣, 党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.
[10] 郝青振, 张人禾, 汪品先, 王斌. 全球季风的多尺度演化[J]. 地球科学进展, 2016, 31(7): 689-699.
[11] 李建平, 赵森, 李艳杰, 汪雷, 孙诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[12] 杨秋明. 10~30 d延伸期天气预报方法研究进展与展望[J]. 地球科学进展, 2015, 30(9): 970-984.
[13] 王辉, 刘娜, 李本霞, 李响. 海洋可预报性和集合预报研究综述[J]. 地球科学进展, 2014, 29(11): 1212-1225.
[14] 邵勰, 黄平, 黄荣辉. 南海夏季风爆发的研究进展[J]. 地球科学进展, 2014, 29(10): 1126-1137.
[15] 邹立维,周天军. 区域海气耦合模式研究进展[J]. 地球科学进展, 2012, 27(8): 857-865.
阅读次数
全文


摘要