Please wait a minute...
img img
高级检索
地球科学进展  2005, Vol. 20 Issue (5): 520-524    DOI: 10.11867/j.issn.1001-8166.2005.05.0520
研究论文     
基于商用运输平台的流动大气和环境监测系统
陈洪滨1;郑国光2
1.中国科学院大气物理研究所,北京 100029;2.中国气象局气象科学研究院,北京 100086
MOBILE SYSTEMS FOR MONITORING THE ATMOSPHERE AND ITS ENVIRONMENTS BASED ON COMMERCIAL TRANSPORT PLATFORMS
CHEN Hongbin1;ZHENG Guoguang2
(1.LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;2.Chinese Academy of Meteorological Sciences, China Meteorology Administration, Beijing 100086, China)
 全文: PDF(59 KB)  
摘要:

高时空精度大气观测资料的缺乏,仍是制约提高数值天气预报水平和深入开展大气科学研究的一个主要因素。为了克服这一问题,除了研制自动化程度高、测量精度高和性能价格比高的仪器设备来装备现有的定点大气观测网外,还应建设一些流动的大气监测系统,以获得常规大气观测台站空档间(如大洋、山区和荒漠等无人区)的天气现象和大气环境变化的信息。然而,在现有台站网之外,再重新建立并运行一个流动专业观测网,既不经济也是不现实的。随着交通和通信技术的快速发展,利用民用的交通运输工具(主要是商船、民航飞机、火车甚至长途汽车),加装大气环境监测传感器,逐步建立海陆空三位一体的流动大气环境监测系统已成为可能。

关键词: 大气监测流动系统    
Abstract:

Lack of high space and time resolution and high quality data of atmospheric observations is still a big obstacle influencing the improvement of numerical weather prediction and further investigation in atmospheric sciences. To overcome this problem, not only the meteorological observation network has to be equipped with automated, higher precision, and more economical devices and instruments, but also a synthetic mobile observation system is required for filling in the data gaps between the surface and upper air sounding stations. However, it is not economical and little possible to set up and operate a new and independent mobile observation network even on the regional scale. Along with the advance of transport platform and communication technology, there is high potential and feasibility to build a 3 dimension mobile system for monitoring the global atmosphere and its environment by using commercial transport platforms such as airplane, ship, train and autobus.

Key words: Atmosphere    Observation    Mobile monitoring system.
收稿日期: 2004-05-25 出版日期: 2005-05-25
:  P41  
通讯作者: 陈洪滨   
作者简介: 陈洪滨(1960-),男,江苏丹徒人,研究员,主要从事大气物理和大气探测研究与教学工作. E-mail:chb@mail.iap.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑国光
陈洪滨

引用本文:

陈洪滨;郑国光. 基于商用运输平台的流动大气和环境监测系统[J]. 地球科学进展, 2005, 20(5): 520-524.

CHEN Hongbin;ZHENG Guoguang. MOBILE SYSTEMS FOR MONITORING THE ATMOSPHERE AND ITS ENVIRONMENTS BASED ON COMMERCIAL TRANSPORT PLATFORMS. Advances in Earth Science, 2005, 20(5): 520-524.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2005.05.0520        http://www.adearth.ac.cn/CN/Y2005/V20/I5/520

[1] Earth Observation Summit Home Page[EB/OL].  http://www.earthobservationsummit.gov/W.R.
[2] Moninger W R, Mamrosh R D, Pauley P M. Automated meteorological reports from commercial aircraft [J].Bulletin of American Meteorology Society, 2003, 84(2): 203-216.
[3] Marenco A, Thouret V, Nedelec P, et al. Measurement of ozone and water vapor by Airbus in service aircraft: The MOZAIC airborne program, an overview [J]. Journal of Geophysical Research, 1998, 103(D19): 25 631-25 642.
[4] Junkermann W. An ultralight aircraft as platform for research in the lower troposphere: System performance and first results from radiation transfer studies in stratiform aerosol layers and broken cloud conditions[J]. Journal AtmosPheric and Oceanographic Technology, 2001, 18: 934-946.
[5] Holland G J, McGeer T, Youngren H. Autonomous Aerosondes for economical atmospheric soundings anywhere on the Globe [J]. Bulletin of American Meteorology Society, 1992, 73(12): 1 987-1 999.
[6] Holland G J, Webster P J, Curry J A, et al. The Aerosonde robotic aircraft: a new paradigm for environmental observations[J].Bulletin of American Meteorology Society, 2001, 82(5): 889-901.
[7] Ma Shuqing, Wang Gai, Pan Yi, et al.An analytical method for wind measurement using miniature aircraft [J]. Chinese Journal of Atmospheric Science, 1999,23(2): 202-208.
[8] Scott S G, Bui T P, Chan K R. The meteorological measurement system on the NASA ER-2 aircraft[J]. Journal of Atmospheric and Oceanographic Technology, 1990, 7(4): 525-540.
[9] Garcia R R, Diaz H F, Herrera R G, et al. Atmospheric circulation changes in the tropical Pacific inferred from the voyages of the Manila Galleons in the sixteenth-eighteenth centuries[J].Bulletin of American Meteorology Society, 2001, 82(11): 2 435-2 455.
[10] Watanabe Y W, Ono T, Sumamoto A, et al. Probability of a reduction in the formation rate of the subsurface water in the North Pacific during the 1980s and 1990s[J]. Geophysical Research Letter, 2001, 28(17): 3 289-3 292.
[11] Webster P J, Lukas R. TOGA COARE: The Coupled Ocean-Atmosphere response Experiment[J]. Bulletin of American Meteorology Society, 1992, 73(9): 1 377-1 416.
[12] Koponen I K, Virkkula A, Hillamo R, et al.Number size distribution and concentrations of marine aerosols: Observations during a cruise between the English Channel and the coast of Antarctica[J]. Journal of Geophysical Research, 107(D24): 4 753-4 761.
[13] Oberlander E A, Brenninkmeijer C A M, Crutzen P J, et al. Trace gas measurements along the Trans-Siberian railroad: The TROICA 5 expedition[J]. Journal of Geophysical Research, 2002, 107(D14): 4 206-4 221.

[1] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[2] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[3] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[4] 王昊亮, 刘玉宝, 赵天良, 郭凤霞, 冯双磊, 王勃. 基于数值天气模式及其模式输出的闪电预报研究进展[J]. 地球科学进展, 2017, 32(1): 44-55.
[5] 徐凯, 姚志刚, 韩志刚, 赵增亮, 方涵先. 临近空间重力波强扰动的卫星观测研究进展[J]. 地球科学进展, 2017, 32(1): 66-74.
[6] 张朝林, 金啟华, 周声圳. 2016年度大气科学领域项目评审与研究成果分析[J]. 地球科学进展, 2016, 31(12): 1279-1284.
[7] 林霄沛, 许丽晓, 李建平, 罗德海, 刘海龙. 全球变暖“停滞”现象辨识与机理研究[J]. 地球科学进展, 2016, 31(10): 995-1000.
[8] 李晓峰. 环状模概念[J]. 地球科学进展, 2015, 30(3): 1-.
[9] 张强, 姚玉璧, 李耀辉, 罗哲贤, 张存杰, 李栋梁, 王润元, 王劲松, 陈添宇, 肖国举, 张书余, 王式功, 郭铌, 白虎志, 谢金南, 杨兴国, 董安祥, 邓振镛, 柯晓新, 徐国昌. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 2015, 30(2): 196-211.
[10] 吴珊珊, 姚治君, 姜丽光, 刘兆飞. 现代冰川体积变化研究方法综述[J]. 地球科学进展, 2015, 30(2): 237-246.
[11] 崔月菊, 李静, 王燕艳, 刘永梅, 陈志, 杜建国. 遥感气体探测技术在地震监测中的应用[J]. 地球科学进展, 2015, 30(2): 284-294.
[12] 张朝林,金啟华,杨若文. 2015年度大气科学领域项目评审与研究成果分析[J]. 地球科学进展, 2015, 30(12): 1353-.
[13] 杨扬, 马劲风, 李琳. CO2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1119-1126.
[14] 王江海, 孙贤贤, 徐小明, 吴酬飞, 彭娟, 袁建平. 海洋碳封存技术:现状、问题与未来[J]. 地球科学进展, 2015, 30(1): 17-25.
[15] 武丰民, 何金海, 祁莉. 北极海冰消融及其对欧亚冬季低温影响的研究进展[J]. 地球科学进展, 2014, 29(8): 913-921.