地球科学进展 ›› 2005, Vol. 20 ›› Issue (5): 520 -524. doi: 10.11867/j.issn.1001-8166.2005.05.0520

研究论文 上一篇    下一篇

基于商用运输平台的流动大气和环境监测系统
陈洪滨 1;郑国光 2   
  1. 1.中国科学院大气物理研究所,北京 100029;2.中国气象局气象科学研究院,北京 100086
  • 收稿日期:2004-05-25 修回日期:2004-09-16 出版日期:2005-05-25
  • 通讯作者: 陈洪滨

MOBILE SYSTEMS FOR MONITORING THE ATMOSPHERE AND ITS ENVIRONMENTS BASED ON COMMERCIAL TRANSPORT PLATFORMS

CHEN Hongbin 1;ZHENG Guoguang 2   

  1. (1.LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;2.Chinese Academy of Meteorological Sciences, China Meteorology Administration, Beijing 100086, China)
  • Received:2004-05-25 Revised:2004-09-16 Online:2005-05-25 Published:2005-05-25

高时空精度大气观测资料的缺乏,仍是制约提高数值天气预报水平和深入开展大气科学研究的一个主要因素。为了克服这一问题,除了研制自动化程度高、测量精度高和性能价格比高的仪器设备来装备现有的定点大气观测网外,还应建设一些流动的大气监测系统,以获得常规大气观测台站空档间(如大洋、山区和荒漠等无人区)的天气现象和大气环境变化的信息。然而,在现有台站网之外,再重新建立并运行一个流动专业观测网,既不经济也是不现实的。随着交通和通信技术的快速发展,利用民用的交通运输工具(主要是商船、民航飞机、火车甚至长途汽车),加装大气环境监测传感器,逐步建立海陆空三位一体的流动大气环境监测系统已成为可能。

Lack of high space and time resolution and high quality data of atmospheric observations is still a big obstacle influencing the improvement of numerical weather prediction and further investigation in atmospheric sciences. To overcome this problem, not only the meteorological observation network has to be equipped with automated, higher precision, and more economical devices and instruments, but also a synthetic mobile observation system is required for filling in the data gaps between the surface and upper air sounding stations. However, it is not economical and little possible to set up and operate a new and independent mobile observation network even on the regional scale. Along with the advance of transport platform and communication technology, there is high potential and feasibility to build a 3 dimension mobile system for monitoring the global atmosphere and its environment by using commercial transport platforms such as airplane, ship, train and autobus.

中图分类号: 

[1] Earth Observation Summit Home Page[EB/OL].  http://www.earthobservationsummit.gov/W.R.
[2] Moninger W R, Mamrosh R D, Pauley P M. Automated meteorological reports from commercial aircraft [J].Bulletin of American Meteorology Society, 2003, 84(2): 203-216.
[3] Marenco A, Thouret V, Nedelec P, et al. Measurement of ozone and water vapor by Airbus in service aircraft: The MOZAIC airborne program, an overview [J]. Journal of Geophysical Research, 1998, 103(D19): 25 631-25 642.
[4] Junkermann W. An ultralight aircraft as platform for research in the lower troposphere: System performance and first results from radiation transfer studies in stratiform aerosol layers and broken cloud conditions[J]. Journal AtmosPheric and Oceanographic Technology, 2001, 18: 934-946.
[5] Holland G J, McGeer T, Youngren H. Autonomous Aerosondes for economical atmospheric soundings anywhere on the Globe [J]. Bulletin of American Meteorology Society, 1992, 73(12): 1 987-1 999.
[6] Holland G J, Webster P J, Curry J A, et al. The Aerosonde robotic aircraft: a new paradigm for environmental observations[J].Bulletin of American Meteorology Society, 2001, 82(5): 889-901.
[7] Ma Shuqing, Wang Gai, Pan Yi, et al.An analytical method for wind measurement using miniature aircraft [J]. Chinese Journal of Atmospheric Science, 1999,23(2): 202-208.
[8] Scott S G, Bui T P, Chan K R. The meteorological measurement system on the NASA ER-2 aircraft[J]. Journal of Atmospheric and Oceanographic Technology, 1990, 7(4): 525-540.
[9] Garcia R R, Diaz H F, Herrera R G, et al. Atmospheric circulation changes in the tropical Pacific inferred from the voyages of the Manila Galleons in the sixteenth-eighteenth centuries[J].Bulletin of American Meteorology Society, 2001, 82(11): 2 435-2 455.
[10] Watanabe Y W, Ono T, Sumamoto A, et al. Probability of a reduction in the formation rate of the subsurface water in the North Pacific during the 1980s and 1990s[J]. Geophysical Research Letter, 2001, 28(17): 3 289-3 292.
[11] Webster P J, Lukas R. TOGA COARE: The Coupled Ocean-Atmosphere response Experiment[J]. Bulletin of American Meteorology Society, 1992, 73(9): 1 377-1 416.
[12] Koponen I K, Virkkula A, Hillamo R, et al.Number size distribution and concentrations of marine aerosols: Observations during a cruise between the English Channel and the coast of Antarctica[J]. Journal of Geophysical Research, 107(D24): 4 753-4 761.
[13] Oberlander E A, Brenninkmeijer C A M, Crutzen P J, et al. Trace gas measurements along the Trans-Siberian railroad: The TROICA 5 expedition[J]. Journal of Geophysical Research, 2002, 107(D14): 4 206-4 221.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[3] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[4] 何建军,郭郁葱,刘哲,吴捷,李莉. 2020年度大气科学领域项目评审与资助成果简析[J]. 地球科学进展, 2020, 35(11): 1201-1210.
[5] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[6] 时连强,郭俊丽,刘海江,叶清华. Argus系统在我国海滩研究中的应用进展与展望[J]. 地球科学进展, 2019, 34(5): 552-560.
[7] 李文龙,高燕. MEMS传感器在锚杆加固边坡监测中的应用研究[J]. 地球科学进展, 2019, 34(4): 439-448.
[8] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[9] 江笑薇, 白建军, 刘宪锋. 基于多源信息的综合干旱监测研究进展与展望[J]. 地球科学进展, 2019, 34(3): 275-287.
[10] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[11] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
[12] 李积明,刘哲,郭郁葱,彭怡然,闻新宇. 2019年度大气科学领域项目评审与研究成果分析[J]. 地球科学进展, 2019, 34(11): 1212-1217.
[13] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[14] 胡雨豪, 袁路, 马东涛, 李梅. 泥石流次声警报研究进展[J]. 地球科学进展, 2018, 33(6): 606-613.
[15] 高兴军, 徐薇薇, 余义常, 李艳然, 李蕾. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(5): 532-544.
阅读次数
全文


摘要